Skip to main content
Log in

Reorientation to vertical modulated by combined support surface tilt and virtual visual flow in healthy elders and adults with stroke

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

We explored how changes in visual attention impacted postural motor performance in healthy elders and adults post-stroke within a virtual reality environment, including when vestibular information was not perceptible. Visual dependence in 13 healthy (50–80 years) and 13 adults post-stroke (49–70 years) was assessed with a rod-and-frame task. Three degree support surface dorsiflexion tilts at 30°/s were combined with 30° and 45°/s continuous pitch rotations of the visual environment. The support surface remained tilted for 30 s followed by a 0.1°/s return to neutral during continued visual field rotation. Body displacement and ankle muscle responses were recorded, and wavelet transforms calculated. Muscle frequencies and kinematic measures were examined with functional principal component analysis, and weights compared through mixed model repeated measures ANOVA. Both populations exhibited increased backward sway with pitch upward visual field motion; adults post-stroke produced significantly larger muscle responses. Lateral sway was most regulated when visual flow velocity matched platform velocity. Visual flow summed with direction of support surface instability and visually dependent individuals produced more controlled lateral sway when viewing a dynamic visual field. Provoking postural instability within a dynamic visual flow field could serve as a training tool for postural stabilizing actions, particularly when visual dependence is exhibited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Allum JH, Carpenter MG, Honegger F, Adkin AL, Bloem BR (2002) Age-dependent variations in the directional sensitivity of balance corrections and compensatory arm movements in man. J Physiol 542:643–663

    Article  PubMed  CAS  Google Scholar 

  2. Barra J, Marquer A, Joassin R, Reymond C, Metge L, Chauvineau V, Pérennou D (2010) Humans use internal models to construct and update a sense of verticality. Brain 133:3552–3563

    Article  PubMed  Google Scholar 

  3. Barra J, Oujamaa L, Chauvineau V, Rougier P, Pérennou D (2009) Asymmetric standing posture after stroke is related to a biased egocentric coordinate system. Neurology 72:1582–1587

    Article  PubMed  CAS  Google Scholar 

  4. Bonan IV, Colle FM, Guichard JP, Vicaut E, Eisenfisz M, Tran Ba Huy P, Yelnik AP (2004) Reliance on visual information after stroke. Part I: balance on dynamic posturography. Arch Phys Med Rehabil 85:268–273

    Article  PubMed  Google Scholar 

  5. Bonan IV, Hubeaux K, Gellez-Leman MC, Guichard JP, Vicaut E, Yelnik AP (2007) Influence of subjective visual vertical misperception on balance recovery after stroke. J Neurol Neurosurg Psychiatry 78:49–55

    Article  PubMed  CAS  Google Scholar 

  6. Bugnariu N, Fung J (2007) Aging and selective sensorimotor strategies in the regulation of upright balance. J Neuroeng Rehabil 4:19

    Article  PubMed  Google Scholar 

  7. Faisal AA, Selen LP, Wolpert DM (2008) Noise in the nervous system. Nat Rev 9:292–303

    Article  CAS  Google Scholar 

  8. Fitzpatrick R, McCloskey DI (1994) Proprioceptive, visual and vestibular thresholds for the perception of sway during standing in humans. J physiol 478:173–186

    PubMed  Google Scholar 

  9. Gribble PL, Mullin LI, Cothros N, Mattar A (2003) Role of cocontraction in arm movement accuracy. J Neurophysiol 89:2396–2405

    Article  PubMed  Google Scholar 

  10. Guerraz M, Bronstein AM (2008) Mechanisms underlying visually induced body sway. Neurosci Lett 443:12–16

    Article  PubMed  CAS  Google Scholar 

  11. Hewson DJ, Singh NK, Snoussi H, Duchene J (2010) Classification of elderly as fallers and non-fallers using centre of pressure velocity. Conf Proc IEEE Eng Med Biol Soc 2010:3678–3681

    PubMed  Google Scholar 

  12. Isableu B, Ohlmann T, Cremieux J, Vuillerme N, Amblard B, Gresty MA (2010) Individual differences in the ability to identify, select and use appropriate frames of reference for perceptuo-motor control. Neuroscience 169:1199–1215

    Article  PubMed  CAS  Google Scholar 

  13. Keshner EA, Allum JH, Honegger F (1993) Predictors of less stable postural responses to support surface rotations in healthy human elderly. J Vestib Res 3:419–429

    PubMed  CAS  Google Scholar 

  14. Keshner EA, Kenyon RV, Langston J (2004) Postural responses exhibit multisensory dependencies with discordant visual and support surface motion. J Vestib Res 14:307–319

    PubMed  Google Scholar 

  15. Keshner EA, Streepey J, Dhaher Y, Hain T (2007) Pairing virtual reality with dynamic posturography serves to differentiate between patients experiencing visual vertigo. J Neuroeng Rehabil 4:24

    Article  PubMed  Google Scholar 

  16. Kluzik J, Horak FB, Peterka RJ (2005) Differences in preferred reference frames for postural orientation shown by after-effects of stance on an inclined surface. Exp Brain Res Experimentelle Hirnforschung 162:474–489

    Article  Google Scholar 

  17. Koch C, Ullman S (1985) Shifts in selective visual attention: towards the underlying neural circuitry. Hum Neurobiol 4:219–227

    PubMed  CAS  Google Scholar 

  18. Lajoie Y, Gallagher SP (2004) Predicting falls within the elderly community: comparison of postural sway, reaction time, the Berg balance scale and the activities-specific balance confidence (ABC) scale for comparing fallers and non-fallers. Arch Gerontol Geriatr 38:11–26

    Article  PubMed  CAS  Google Scholar 

  19. Lauer RT, Smith BT, Shewokis PA, McCarthy JJ, Tucker CA (2007) Time-frequency changes in electromyographic signals after hamstring lengthening surgery in children with cerebral palsy. J Biomech 40:2738–2743

    Article  PubMed  Google Scholar 

  20. Mahboobin A, Loughlin PJ, Redfern MS (2007) A model-based approach to attention and sensory integration in postural control of older adults. Neurosci Lett 429:147–151

    Article  PubMed  CAS  Google Scholar 

  21. Maki BE, Holliday PJ, Topper AK (1994) A prospective study of postural balance and risk of falling in an ambulatory and independent elderly population. J Gerontol 49:M72–M84

    Article  PubMed  CAS  Google Scholar 

  22. Manor B, Hu K, Zhao P, Selim M, Alsop D, Novak P, Lipsitz L, Novak V (2010) Altered control of postural sway following cerebral infarction: a cross-sectional analysis. Neurology 74:458–464

    Article  PubMed  CAS  Google Scholar 

  23. Marigold DS, Eng JJ (2006) The relationship of asymmetric weight-bearing with postural sway and visual reliance in stroke. Gait Posture 23:249–255

    Article  PubMed  Google Scholar 

  24. Marigold DS, Eng JJ, Tokuno CD, Donnelly CA (2004) Contribution of muscle strength and integration of afferent input to postural instability in persons with stroke. Neurorehabil Neural Repair 18:222–229

    Article  PubMed  Google Scholar 

  25. Nyberg L, Gustafson Y (1995) Patient falls in stroke rehabilitation. A challenge to rehabilitation strategies. Stroke 26:838–842

    Article  PubMed  CAS  Google Scholar 

  26. Pincus SM (1991) Approximate entropy as a measure of system complexity. Proc Natl Acad Sci USA 88:2297–2301

    Article  PubMed  CAS  Google Scholar 

  27. Posner MI (1980) Orienting of attention. Q J Exp Psychol 32:3–25

    Article  PubMed  CAS  Google Scholar 

  28. Pérennou DA, Amblard B, Leblond C, Pélissier J (1998) Biased postural vertical in humans with hemispheric cerebral lesions. Neurosci Lett 252:75–78

    Article  PubMed  Google Scholar 

  29. Pérennou DA, Mazibrada G, Chauvineau V, Greenwood R, Rothwell J, Gresty MA, Bronstein AM (2008) Lateropulsion, pushing and verticality perception in hemisphere stroke: a causal relationship? Brain 131:2401–2413

    Article  PubMed  Google Scholar 

  30. R. CJaS (1998) A motor relearning programme for stroke. Aspen Publishers

  31. Rosenhall U (1973) Degenerative patterns in the aging human vestibular neuro-epithelia. Acta Otolaryngol 76:208–220

    Article  PubMed  CAS  Google Scholar 

  32. Slaboda JC, Barton JE, Maitin IB, Keshner EA (2009) Visual field dependence influences balance in patients with stroke. Conf Proc IEEE Eng Med Biol Soc 2009:1147–1150

    PubMed  CAS  Google Scholar 

  33. Slaboda JC, Lauer R, Keshner EA (2011) Time series analysis of postural responses to combined visual pitch and support surface tilt. Neurosci Lett 491:138–142

    Article  PubMed  CAS  Google Scholar 

  34. Slaboda JC, Lauer RT, Keshner EA (2011) Continuous visual field motion impacts the postural responses of older and younger women during and after support surface tilt. Exp Brain Res 211:87–96

    Article  PubMed  Google Scholar 

  35. Stergiou N, Harbourne R, Cavanaugh J (2006) Optimal movement variability: a new theoretical perspective for neurologic physical therapy. J Neurol Phys Ther 30:120–129

    PubMed  Google Scholar 

  36. Streepey JW, Kenyon RV, Keshner EA (2007) Field of view and base of support width influence postural responses to visual stimuli during quiet stance. Gait Posture 25:49–55

    Article  PubMed  Google Scholar 

  37. Streepey JW, Kenyon RV, Keshner EA (2007) Visual motion combined with base of support width reveals variable field dependency in healthy young adults. Exp Brain Res 176:182–187

    Article  PubMed  Google Scholar 

  38. Ura M, Pfaltz CR, Allum JH (1991) The effect of age on the visuo- and vestibulo-ocular reflexes of elderly patients with vertigo. Acta Otolaryngol 481:399–402

    Article  CAS  Google Scholar 

  39. van Asseldonk EH, Buurke JH, Bloem BR, Renzenbrink GJ, Nene AV, van der Helm FC, van der Kooij H (2006) Disentangling the contribution of the paretic and non-paretic ankle to balance control in stroke patients. Exp Neurol 201:441–451

    Article  PubMed  Google Scholar 

  40. Wang Y, Kenyon RV, Keshner EA (2010) Identifying the control of physically and perceptually evoked sway responses with coincident visual scene velocities and tilt of the base of support. Exp Brain Res 201:663–672

    Article  PubMed  Google Scholar 

  41. Witkin HA, Asch SE (1948) Studies in space orientation; further experiments on perception of the upright with displaced visual fields. J Exp psychol 38:762–782

    Article  PubMed  CAS  Google Scholar 

  42. Woollacott MH (1993) Age-related changes in posture and movement. J Gerontology 48:56–60

    Article  Google Scholar 

  43. Yelnik AP, Lebreton FO, Bonan IV, Colle FM, Meurin FA, Guichard JP, Vicaut E (2002) Perception of verticality after recent cerebral hemispheric stroke. Stroke 33:2247–2253

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institute of Disability and Rehabilitation Research grant H133F100010 and National Institute of Health grant AG26470.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jill C. Slaboda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slaboda, J.C., Keshner, E.A. Reorientation to vertical modulated by combined support surface tilt and virtual visual flow in healthy elders and adults with stroke. J Neurol 259, 2664–2672 (2012). https://doi.org/10.1007/s00415-012-6566-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-012-6566-7

Keywords

Navigation