Skip to main content
Log in

Biomarker level improves the diagnosis of embolic source in ischemic stroke of unknown origin

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

The risk of recurrent stroke is likely related to etiology. Therefore it is important to identify which patients are at highest early risk. We evaluated whether selected blood biomarkers may aid in the diagnosis of stroke etiology. We studied consecutive non-lacunar stroke patients between November 2006 and January 2007, and selected undetermined origin strokes. Blood samples were drawn at arrival to test brain natriuretic peptide (BNP), D-dimer, CK-MB, myoglobin, and troponin. Second harmonic transthoracic echocardiography (SHTTE) and ECG-24 h monitoring were also performed within the first 24 h. We evaluated 294 patients with ischemic stroke; 89 had an initial undetermined origin. After a cardiological work-up, 49 were diagnosed as embolic including atrial fibrillation (4), severe aortic arch atheromatosis (24), severe wall abnormalities (12), valve disease (3), dilated cardiomyopathy (1), and patent foramen (5). Higher levels of CK-MB, BNP, and myoglobin were found in patients with embolic source in SHTTE, but only CK-MB >1.5 ng/ml and BNP >64 pg/ml remained as independent predictors: BNP (OR 8.86; CI 95 % 2.79–28.09), CK-MB (OR 6.28; CI 95 % 1.66–23.69). BNP showed specificity of 75 %, sensitivity of 63.4 %, and positive predictive value (PPV) of 75.6 %. CK-MB had specificity of 85 %, sensitivity of 47.9 %, and PPV of 79.3 %. Measuring both biomarkers improves the finding of embolic source, increasing specificity to 95 % and PPV to 88.2 %. High-level CK-MB and BNP during the acute phase of ischemic stroke are associated with an embolic source. Measurement of both biomarkers may improve the diagnosis, guiding the need to perform a heart exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. World Health Organization (2004) The global burden of disease (update 20080

  2. Lovett JK, Coull AJ, Rothwell PM (2004) Early risk of recurrence by subtype of ischemic stroke in population-based incidence studies. Neurology 62:569–573

    Article  PubMed  CAS  Google Scholar 

  3. Adams HP Jr, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL et al (1993) Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 24:35–41

    Google Scholar 

  4. Brott T, Bogousslavsky J (2000) Treatment of acute ischemic stroke. N Engl J Med 343:710–722

    Article  PubMed  CAS  Google Scholar 

  5. Kolominsky-Rabas PL, Weber M, Gefeller O, Neundoerfer B, Heuschmann PU (2001) Epidemiology of ischemic stroke subtypes according to TOAST criteria. Incidence, recurrence, and long-term survival in ischemic stroke subtypes: a population-based study. Stroke 32:2735–2740

    Article  PubMed  CAS  Google Scholar 

  6. Castellanos M, Serena J (2007) Applicability of biomarkers in ischemic stroke. Cerebrovasc Dis 24(suppl 1):7–15

    Article  PubMed  CAS  Google Scholar 

  7. Whiteley W, Tseng MC, Sandercock P (2008) Blood biomarkers in the diagnosis of ischemic stroke: a systematic review. Stroke 39:2902–2909

    Article  PubMed  Google Scholar 

  8. Foerch C, Montaner J, Furie KL, Ning MM, Lo EH (2009) Blood biomarkers in acute stroke. Neurology 73:393–399

    Article  PubMed  CAS  Google Scholar 

  9. Montaner J, Perea-Gainza M, Delgado P, Ribo M, Chacón P, Rosell A et al (2008) Etiologic diagnosis of ischemic stroke subtypes with plasma biomarkers. Stroke 39:2280–2287

    Article  PubMed  CAS  Google Scholar 

  10. Maisel A, Mueller C, Adams K Jr, Anker SD, Aspromonte N, Cleland JG et al (2008) State of the art: using natriuretic peptide levels in clinical practice. Eur J Heart Fail 10:824–839

    Article  PubMed  CAS  Google Scholar 

  11. Tombul T, Atbas C, Anlar O (2005) Hemostatic markers and platelet aggregation factors as predictive markers for type of stroke and neurological disability following cerebral infarction. J Clin Neurosci 12:429–434

    Article  PubMed  CAS  Google Scholar 

  12. Ageno W, Finazzi S, Steidl L, Biotti MG, Mera V, Melzi D’Eril G et al (2002) Plasma measurement of D-dimer levels for the early diagnosis of ischemic stroke subtypes. Arch Intern Med 62:2589–2593

  13. Furie KL, Rosenberg R, Thompson JL, Bauer K, Mohr JP, Rosner B et al (2004) Thrombin generation in non-cardioembolic stroke subtypes: the Hemostatic System Activation Study. Neurology 63:777–784

    Article  PubMed  CAS  Google Scholar 

  14. The French Study of Aortic plaques in Stroke Group (1996) Aheroscletotic disease of the aortic arch as a risk factor for recurrent ischemic group. N Engl J Med 334:1216–1221

    Article  Google Scholar 

  15. Shizabaki K, Kimura K, Iguchi Y, Okada Y, Inoue T (2009) Plasma brain natriuretic peptide can be a biological marker to distinguish cardioembolic stroke from other stroke types in acute ischemic stroke. Intern Med 48:259–264

    Article  Google Scholar 

  16. Inoue S, Murakami Y, Sano K, Katoh H, Shimada T (2000) Atrium as a source of brain natriuretic polypeptide in patients with atrial fibrillation. J Card Fail 6:92–96

    Article  PubMed  CAS  Google Scholar 

  17. Ohta Y, Shimada T, Yoshitomi H, Inoue S, Murakami Y, Shimizu H et al (2001) Drop in plasma brain natriuretic peptide levels after successful direct current cardioversion in chronic atrial fibrillation. Can J Cardiol 17:415–420

    PubMed  CAS  Google Scholar 

  18. Hussein AA, Saliba WI, Martin DO, Shadman M, Kanj M, Bhargava M et al (2011) Plasma B-type natriuretic peptide levels and recurrent arrhythmia after successful ablation of lone atrial fibrillation. Circulation 123:2077–2082

    Article  PubMed  CAS  Google Scholar 

  19. de Lemos JA, McGuire DK, Drazner MH (2003) B-type natriuretic peptide in cardiovascular disease. Lancet 362:316–322

    Article  PubMed  Google Scholar 

  20. Shimizu H, Murakami Y, Inoue S, Ohta Y, Nakamura K, Katoh H et al (2002) High plasma brain natriuretic polypeptide level as a marker of risk for thromboembolism in patients with nonvalvular atrial fibrillation. Stroke 33:1005–1010

    Article  PubMed  CAS  Google Scholar 

  21. Naya T, Yukiiri K, Hosomi N, Takahashi T, Ohkita H, Mukai M et al (2008) Brain natriuretic peptide as a surrogate marker for cardiembolic stroke with paroxysmal atrial fibrillation. Cerebrovasc Dis 26:434–440

    Article  PubMed  CAS  Google Scholar 

  22. Okada Y, Shibazaki K, Kimura K, Iguchi Y, Miki T (2010) Brain natriuretic peptide as a predictor of delayed atrial fibrillation after ischaemic stroke and transient ischaemic attack. Eur J Neurol 17:326–331

    Article  PubMed  CAS  Google Scholar 

  23. Okada Y, Shibazaki K, Kimura K, Matsumoto N, Iguchi Y, Aoki J et al (2011) Brain natriuretic peptide is a marker associated with thrombus in stroke patients with atrial fibrillation. J Neurol Sci 301:86–89

    Article  PubMed  CAS  Google Scholar 

  24. Fromm RE Jr (2007) Cardiac troponins in the intensive care unit: common causes of increased levels and interpretation. Crit Care Med 35:584–588

    Article  PubMed  CAS  Google Scholar 

  25. Ay H, Arsava EM, Saribaş O (2002) Creatine kinase-MB elevation after stroke is not cardiac in origin: comparison with troponin T levels. Stroke 33:286–289

    Article  PubMed  CAS  Google Scholar 

  26. Di Angelantonio E, Fiorelli M, Toni D, Sacchetti ML, Lorenzano S, Falcou A et al (2005) Prognostic significance of admission levels of troponin I in patients with acute ischaemic stroke. J Neurol Neurosurg Psychiatry 76:76–81

    Article  PubMed  Google Scholar 

  27. Guerrero-Peral AB, Guerrero-Peral AL, Carrascal Y, Bustamante R, Rodríguez MA, Ponce-Villares MA et al (2002) Specific markers of myocardial injury in acute stroke. Rev Neurol 35:901–904

    PubMed  CAS  Google Scholar 

  28. Tohgi H, Kawashima M, Tamura K, Suzuki H (1990) Coagulation-fibrinolysis abnormalities in acute and chronic phases of cerebral thrombosis and embolism. Stroke 21:1663–1667

    Article  PubMed  CAS  Google Scholar 

  29. Nakagawa K, Hirai T, Shinokawa N, Takashima S, Nozawa T, Asanoi H, Inoue H (2002) Aortic spontaneous echocardiographic contrast and hemostatic markers in patients with nonrheumatic atrial fibrillation. Chest 121:500–505

    Article  PubMed  Google Scholar 

  30. Okada Y, Yamaguchi T, Minematsu K, Miyashita T, Sawada T, Sadoshima S et al (1989) Hemorrhagic transformation in cerebral embolism. Stroke 20:598–603

    Article  PubMed  CAS  Google Scholar 

  31. de Abreu TT, Mateus S, Correia J (2005) Therapy implications of transthoracic echocardiography in acute ischemic stroke patients. Stroke 36:1565–1566

    Article  PubMed  Google Scholar 

  32. Harloff A, Handke M, Reinhard M, Geibel A, Hetzel A (2006) Therapeutic strategies after examination by transesophageal echocardiography in 503 patients with ischemic stroke. Stroke 37:859–864

    Article  PubMed  Google Scholar 

  33. de Bruijn S, Agema W, Lammers GJ, van der Wall E, Wolterbeek R, Holman E et al (2006) Transesophageal echocardiography is superior to transthoracic echocardiography in management of patients of any age with transient ischemic attack or stroke. Stroke 37:2531–2534

    Article  PubMed  Google Scholar 

  34. Beattie JR, Cohen DJ, Manning WJ, Douglas PS (1998) Role of routine transthoracic echocardiography in evaluation and management of stroke. J Intern Med 243:281–291

    Article  PubMed  CAS  Google Scholar 

  35. Souteyrand G, Motreff P, Lusson JR, Rodriguez R, Geoffroy E, Dauphin C et al (2006) Comparison of transthoracic echocardiography using second harmonic imaging, transcranial Doppler and transesophageal echocardiography for the detection of patent foramen ovale in stroke patients. Eur J Echocardiogr 7:147–154

    Article  PubMed  Google Scholar 

  36. Marnane M, Duggan CA, Sheehan OC, Merwick A, Hannon N, Curtin D et al (2010) Stroke subtype classification to mechanism-specific and undetermined categories by TOAST, A-S-C-O, and causative classification system: direct comparison in the North Dublin population stroke study. Stroke 41:1579–1586

    Article  PubMed  Google Scholar 

  37. Vanderheyden M, Bartunek, Claeys G, Manoharan G, Beckers JF, Ide L (2006) Head to head comparison of N-terminal pro-B-type natriuretic peptide and B-type natriuretic peptide in patients with/without left ventricular systolic dysfunction. Clin Biochem 39:640–645

Download references

Acknowledgments

The diagnostic kits were kindly donated by Inverness. Neurovascular Research Laboratory takes part into the Spanish stroke research network (RENEVAS, RD06/0026/0010) and the European Stroke Network (EUSTROKE 7FP Health F2-08-202213) and is partially funded by grants from the Fondo de Investigaciones Sanitarias (FIS 11/176) for stroke biomarkers studies. P.D. is supported by Miguel Servet senior research contracts (CP09/00136) and T.G-B. by a predoctoral fellowship (FI09/00017) from the Carlos III Health Institute.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Santamarina.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPEG 51 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santamarina, E., Penalba, A., García-Berrocoso, T. et al. Biomarker level improves the diagnosis of embolic source in ischemic stroke of unknown origin. J Neurol 259, 2538–2545 (2012). https://doi.org/10.1007/s00415-012-6532-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-012-6532-4

Keywords

Navigation