Skip to main content

Advertisement

Log in

Microcirculation response to local cooling in patients with Huntington’s disease

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Altered autonomic nervous system (ANS) functioning in early stages of Huntington’s disease (HD) has been suggested, presumably due to distorted high-order autonomic control. ANS functioning in the early stages of HD was further investigated. Laser-Doppler (LD) flux in the skin of the fingertips, heart rate (HR), HR variability, systolic and diastolic blood pressure were measured during rest and during a 6 min cooling of one hand at 15°C. Data of 15 presymptomatic gene mutation carriers (PHD), 15 early symptomatic HD patients (EHD), and two groups of 15 age- and sex-matched controls were compared. The area under the low frequency (LF) and high frequency (HF) bands of the HR variability spectrum were calculated. An augmented reduction of cutaneous LD flux was found in response to the direct cooling in the PHD group (37.5 ± 8.5% of resting value) compared to the PHD controls (67.27 ± 8.4%) (p < 0.05). In addition, the PHD group had higher (LF/(LF + HF) index of primary sympathetic modulation of the HR at rest (53.6 ± 3.3) compared to the EHD patients (39.7 ± 4.2) (p < 0.05). In the EHD group, a significantly smaller change of HR during cooling (100.26 ± 1.2%) was found compared to the EHD controls (95.9 ± 1.0%) (p < 0.05). The results are in line with the hypothesis that ANS dysfunction occurs even in PHD subjects. Further, they support the hypothesis that dysfunction of the high-order autonomic centres are involved in HD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Aziz NA, Anguelova GV, Marinus J, van Dijk JG, Roos RAC (2010) Autonomic symptoms in patients and pre-manifest mutation carriers of Huntington’s disease. Eur J Neurol 17:1068–1074

    Article  PubMed  CAS  Google Scholar 

  2. Den Heijer JC, Bollen WL, Reulen JP, van Dijk JG, Kramer CG, Roos RA, Buruma OJ (1988) Autonomic nervous function in Huntington’s disease. Arch Neurol 45:309–312

    Article  Google Scholar 

  3. Sharma KR, Romano JG, Ayyar R, Rotta FT, Facca A, Sanchez-Ramos J (1999) Sympathetic skin response and heart rate variability in patients with Huntington’s disease. Arch Neurol 56:1248–1252

    Article  PubMed  CAS  Google Scholar 

  4. Andrich J, Schmitz T, Saft C, Postert T, Kraus P, Epplen JT, Przuntek H, Agelink MW (2002) Autonomic nervous system function in Huntington’s disease. J Neurol Neurosurg Psychiatry 72:726–731

    Article  PubMed  CAS  Google Scholar 

  5. Kobal J, Melik Z, Cankar K, Bajrovic FF, Meglic B, Peterlin B, Zaletel M (2010) Autonomic dysfunction in presymptomatic and early symptomatic Huntington’s disease. Acta Neurol Scand 121:392–399

    Article  PubMed  CAS  Google Scholar 

  6. Feigin A, Tang C, Ma Y, Mattis P, Zgaljardic D, Guttman M, Paulsen JS, Dhawan V, Eidelberg D (2007) Thalamic metabolism and symptom onset in preclinical Huntington’s disease. Brain 130:2858–2867

    Article  PubMed  CAS  Google Scholar 

  7. Squitieri F, Cannella M, Giallonardo P, Maglione V, Mariotti C, Hayden MR (2001) Onset and pre-onset studies to define the Huntington’s disease natural history. Brain Res Bull 56:233–238

    Article  PubMed  CAS  Google Scholar 

  8. Rosas HD, Hevelone ND, Zaleta AK, Greve DN, Salat DH, Fischl B (2005) Regional cortical thinning in preclinical Huntington disease and its relationship to cognition. Neurology 65:745–747

    Article  PubMed  CAS  Google Scholar 

  9. Aziz NA, Swaab DF, Pijl H, Roos RAC (2007) Hypothalamic dysfunction and neuroendocrine and metabolic alterations in Huntington’s disease: clinical consequences and therapeutic implications. Rev Neurosci 18:223–251

    Article  PubMed  CAS  Google Scholar 

  10. Politis M, Pavese N, Tai YF, Tabrizi SJ, Barker RA, Piccini P (2008) Hypothalamic involvement in Huntington’s disease: an in vivo PET study. Brain 131:2860–2869

    Article  PubMed  Google Scholar 

  11. Hult S, Schultz K, Soylu R, Petersén A (2010) Hypothalamic and neuroendocrine changes in Huntington’s disease. Curr Drug Targets 11:1237–1249

    PubMed  CAS  Google Scholar 

  12. Benarroch EE (1993) The central autonomic network: functional organisation, dysfunction and perspective. Mayo Clin Proc 68:988–1001

    PubMed  CAS  Google Scholar 

  13. Peckerman A, La Manca JJ, Smith SL (2000) Cardiovascular stress responses and their regulation to symptoms of gulf war veterans with fatiguing illness. Psychosom Med 62:509–516

    PubMed  CAS  Google Scholar 

  14. Lovallo W (1975) The cold pressure test and autonomic function: a review and integration. Psychophysiology 12:268–282

    Article  PubMed  CAS  Google Scholar 

  15. Hahn-Barma V, Deweer B, Dürr A, Dodé C, Feingold J, Pillon B, Agid Y, Brice A, Dubois B (1998) Are cognitive changes the first symptoms of Huntington’s disease? A study of gene carriers. J Neurol Neurosurg Psychiatry 64:172–177

    Article  PubMed  CAS  Google Scholar 

  16. Li SH, Yu ZX, Li CL, Nguyen HP, Zhou YX, Deng C, Li XJ (2003) Lack of huntingtin-associated protein-1 causes neuronal death resembling hypothalamic degeneration in Huntington’s disease. J Neurosci 23:6956–6964

    PubMed  CAS  Google Scholar 

  17. Kassubek J, Juengling FD, Kioschies T, Henkel K, Karitzky J, Kramer B, Ecker D, Andrich J, Saft C, Kraus P, Aschoff AJ, Ludolph AC, Landwehrmeyer GB (2004) Topography of cerebral atrophy in early Huntington’s disease: a voxel based morphometric MRI study. J Neurol Neurosurg Psychiatry 75:213–220

    PubMed  CAS  Google Scholar 

  18. Goodman AO, Murgatroyd PR, Medina-Gomez G, Wood NI, Finer N, Vidal-Puig AJ, Morton AJ, Barker RA (2008) The metabolic profile of early Huntington’s disease-a combined human and transgenic mouse study. Exp Neurol 210:691–698

    Article  PubMed  CAS  Google Scholar 

  19. Petersén A, Gil J, Maat-Schieman ML, Björkqvist M, Tanila H, Araújo IM, Smith R, Popovic N, Wierup N, Norlén P, Li JY, Roos RA, Sundler F, Mulder H, Brundin P (2005) Orexin loss in Huntington’s disease. Hum Mol Genet 14:39–47

    Article  PubMed  Google Scholar 

  20. Kobal J, Meglic B, Mesec A, Peterlin B (2004) Early sympathetic hyperactivity in Huntington’s disease. Eur J Neurol 11:842–848

    Article  PubMed  CAS  Google Scholar 

  21. Low PA, Neumann C, Dyck PJ, Fealey RD, Tuck RR (1983) Evaluation of skin vasomotor reflexes by using laser Doppler velocimetry. Mayo Clin Proc 58:583–592

    PubMed  CAS  Google Scholar 

  22. Marriott I, Marshall JM, Johns EJ (1990) Cutaneous vascular responses evoked in the hand by the cold pressor test and by mental arithmetic. Clin Sci (Lond) 79:43–50

    CAS  Google Scholar 

  23. Benarroch EE (2007) Thermoregulation: recent concepts and remaining questions. Neurology 69:1293–1297

    Article  PubMed  Google Scholar 

  24. Horiuchi J, McDowall LM, Dampney RA (2006) Differential control of cardiac and sympathetic vasomotor activity from the dorsomedial hypothalamus. Clin Exp Pharmacol Physiol 33:1265–1268

    Article  PubMed  CAS  Google Scholar 

  25. DiMicco JA, Zaretsky DV (2007) The dorsomedial hypothalamus: a new player in thermoregulation. Am J Physiol Regul Integr Comp Physiol 292:R47–R63

    Article  PubMed  CAS  Google Scholar 

  26. De Menezes RCA, Zaretsky DV, Fontes MAP, DiMicco JA (2009) Cardiovascular and thermal responses evoked from the periaqueductal grey require neuronal activity in the hypothalamus. J Physiol 587:1201–1215

    Article  PubMed  Google Scholar 

  27. Minson CT (2010) Thermal provocation to evaluate microvascular reactivity in human skin. J Appl Physiol 109:1239–1246

    Article  PubMed  Google Scholar 

  28. Johnson JM (1990) The cutaneous circulation; perimeds LDV flowmeter. In: Sheperd AP, Öberg PA (eds) Laser-Doppler Flowmetry. Kluwer Academic Publishers, Boston, pp 121–140

    Google Scholar 

  29. Pérgola PE, Kellogg DL, Johnson JM, Kosiba WA (1993) Role of sympathetic nerves in the vascular effects of local temperature in human forearm skin. Am J Physiol 265:H785–H792

    PubMed  Google Scholar 

  30. Johnson JM, Kellogg DL Jr (2010) Local thermal control of the human cutaneous circulation. J Appl Physiol 109:1229–1238

    Article  PubMed  Google Scholar 

  31. Vanhoutte PM, Verbeuren TJ (1976) Depression by local cooling of 3H-norepinephrine release evoked by nerve stimulation in cutaneous veins. Blood Vessels 13:92–99

    PubMed  CAS  Google Scholar 

  32. Roberts MF, Chilgren JD, Huang M (1986) Effect of temperature on degradation of norepinephrine in rabbit ear artery. Physiologist 29:181

    Google Scholar 

  33. Janssens WJ, Vanhoutte PM (1978) Instantaneous changes of alpha-adrenoceptor affinity caused by moderate cooling in canine cutaneous veins. Am J Physiol 234:H330–H337

    PubMed  CAS  Google Scholar 

  34. Roberts MF, Zygmunt A, Chilgren JD (1989) Effect of temperature on alpha-adrenoceptor affinity and contractility of rabbit ear blood vessels. Blood Vessels 26:185–196

    PubMed  CAS  Google Scholar 

  35. Roberts M, Rivers T, Oliveria S, Texeria P, Raman E (2002) Adrenoceptor and local modulator control of cutaneous blood flow in thermal stress. Comp Biochem Physiol A Mol Integr Physiol 131:485–496

    Article  PubMed  Google Scholar 

  36. Chotani MA, Flavahan S, Mitra S, Daunt D, Flavahan NA (2000) Silent alpha(2C)-adrenergic receptors enable cold-induced vasoconstriction in cutaneous arteries. Am J Physiol Heart Circ Physiol American 278:H1075–H1083

    CAS  Google Scholar 

  37. Bailey SR, Eid AH, Mitra S, Flavahan S, Flavahan NA (2004) Rho kinase mediates cold-induced constriction of cutaneous arteries: role of alpha2C-adrenoceptor translocation. Circ Res 94:1367–1374

    Article  PubMed  CAS  Google Scholar 

  38. Bailey SR, Mitra S, Flavahan S, Flavahan NA (2005) Reactive oxygen species from smooth muscle mitochondria initiate cold-induced constriction of cutaneous arteries. Am J Physiol Heart Circ Physiol 289:H243–H250

    Article  PubMed  CAS  Google Scholar 

  39. Marshall JM, Stone A, Johns EJ (1990) Analysis of vascular responses evoked in the cutaneus circulation of one hand by cooling the contralateral hand. J Auton Nerv Syst 31:57–66

    Article  PubMed  CAS  Google Scholar 

  40. Peckerman A, Hurwitz BE, Saab PG, Llabre MM, McCabe PM, Schneiderman N (1994) Stimulus dimensions of the cold pressor test and the associated patterns of cardiovascular response. Psychophysiology 31:282–290

    Article  PubMed  CAS  Google Scholar 

  41. The Huntington’s Disease Collaborative ResearchGroup (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983

    Article  Google Scholar 

  42. International HuntingtonAssociation (IHA), The World Federation of Neurology (WFN) Research Group on Huntington’s chorea (1994) Guidelines for the molecular genetics predictive test in Huntington’s disease. Neurology 44:1533–1536

    Article  Google Scholar 

  43. Tonkin AL, Frewin DB (2002) Drugs, chemicals and toxins that alter autonomic function. In: Mathias CJ, Bannister R (eds) Autonomic failure. Oxford University Press, Oxford, pp 527–533

    Google Scholar 

  44. Low PA, Pfeifer MA (1993) Standardization of clinical tests for practice and clinical trials. In: Low PA (ed) Clinical autonomic disorders: evaluation and management. Little Brown and Co, Boston, pp 728–745

    Google Scholar 

  45. Huntington study group (1996) Unified Huntington’s disease rating scale: reliability and consistency. Mov Disord 11:136–142

    Article  Google Scholar 

  46. Yvonne-Tee GB, Rasool AH, Halim AS, Rahman AR (2006) Noninvasive assessment of cutaneous vascular function in vivo using capillaroscopy, plethysmography and laser-Doppler instruments: its strengths and weaknesses. Clin Hemorheol Microcirc 34:457–473

    PubMed  Google Scholar 

  47. Omboni S, Parati G, Di Rienzo M, Wieling W, Mancia G (1996) Blood pressure and heart rate variability in autonomic disorders: a critical review. Clin Auton Res 6:171–182

    Article  PubMed  CAS  Google Scholar 

  48. Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger AC, Cohen RJ (1981) Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science 213:220–222

    Article  PubMed  CAS  Google Scholar 

  49. Malik M (1996) Heart rate variability: standards of measurements, physiological interpretation, and clinical use. Circulation 93:1043–1065

    Article  Google Scholar 

  50. Stein PK, Kleiger RE (1999) Insights from the study of heart rate variability. Annu Rev Med 50:249–261

    Article  PubMed  CAS  Google Scholar 

  51. Di Rienzo M, Bertinieri G, Mancia G, Pedotti A (1985) A new method for evaluating the baroreflex role by a joint pattern analysis of pulse interval and systolic blood pressure series. Med Biol Eng Comput 23:313–314

    Google Scholar 

  52. Parati G, Di Rienzo M, Mancia G (2000) How to measure baroreflex sensitivity: from the cardiovascular laboratory to daily life. J Hypertens 18:7–19

    Article  PubMed  CAS  Google Scholar 

  53. Cankar K, Finderle Z (2003) Gender differences in cutaneous vascular and autonomic nervous response to local cooling. Clin Auton Res 13:214–220

    PubMed  Google Scholar 

  54. Smith R, Brundin P, Li JY (2005) Synaptic dysfunction in Huntington’s disease: a new perspective. Cell Mol Life Sci 62:1901–1912

    Article  PubMed  CAS  Google Scholar 

  55. Quintanilla RA, Johnson GV (2009) Role of mitochondrial dysfunction in the pathogenesis of Huntington’s disease. Brain Res Bull 80:242–247

    Article  PubMed  CAS  Google Scholar 

  56. Rosas HD, Salat DH, Lee SY, Zaleta AK, Pappu V, Fischl B, Greve D, Hevelone N, Hersch SM (2008) Cerebral cortex and the clinical expression of Huntington’s disease: complexity and heterogeneity. Brain 131:1057–1068

    Article  PubMed  Google Scholar 

  57. MacMillan J, Quarrell O (1996) The neurobiology of Huntington’s disease. In: Harper PS (ed) Huntington’s disease. WB Saunders, London, pp 317–357

    Google Scholar 

  58. Ghilardi MF, Silvestri G, Feigin A, Mattis P, Zgaljardic D, Moisello C, Crupi D, Marinelli L, Dirocco A, Eidelberg D (2008) Implicit and explicit aspects of sequence learning in pre-symptomatic Huntington’s disease. Parkinsonism Relat Disord 14:457–464

    Article  PubMed  CAS  Google Scholar 

  59. Tabrizi SJ, Langbehn DR, Leavitt BR, Roos RA, Durr A, Craufurd D, Kennard C, Hicks SL, Fox NC, Scahill RI, Borowsky B, Tobin AJ, Rosas HD, Johnson H, Reilmann R, Landwehrmeyer B, Stout JC, TRACK-HDinvestigators (2009) Biological and clinical manifestations of Huntington’s disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet Neurol 8:791–801

    Article  PubMed  Google Scholar 

  60. van den Bogaard SJ, Dumas EM, Acharya TP, Johnson H, Langbehn DR, Scahill RI, Tabrizi SJ, van Buchem MA, van der Grond J, Roos RA TRACK-HD, Group Investigator (2011) Early atrophy of pallidum and accumbens nucleus in Huntington’s disease. J Neurol 258:412–420

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by Ministry of Higher Education, Science and Technology (Grant No.: PO-510-381), Slovenia.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziva Melik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melik, Z., Kobal, J., Cankar, K. et al. Microcirculation response to local cooling in patients with Huntington’s disease. J Neurol 259, 921–928 (2012). https://doi.org/10.1007/s00415-011-6279-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-011-6279-3

Keywords

Navigation