Skip to main content
Log in

Congenital mirror movements: a clue to understanding bimanual motor control

  • Review
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Mirror movements (MM) are involuntary movements of one side of the body that accompany and mirror intentional movements on the opposite side. Physiological MM can occur during normal childhood development, probably owing to corpus callosum immaturity. Pathological congenital MM may be clinically isolated or part of a complex congenital syndrome, including Kallmann syndrome, Klippel-Feil syndrome, and congenital hemiplegia. Congenital isolated MM are usually familial. Recently, heterozygous mutations of the DCC gene, with autosomal dominant inheritance, were shown to cause some cases of MM. The pathogenesis of congenital MM may involve (i) abnormal interhemispheric inhibition between the two motor cortices; (ii) functional alteration of motor planning and motor execution; and/or (iii) abnormal persistence of the ipsilateral corticospinal tract. Fundamental and clinical research is providing novel insights into the complex underlying molecular pathways, and recent experimental work has identified several mechanisms that may mediate the motor network dysfunction. In this review, we analyze clinical, genetic, neurophysiologic, and neuroimaging data on congenital MM, and discuss how this knowledge may improve our understanding of bimanual motor control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bax M, Goldstein M, Rosenbaum P, Leviton A, Paneth N, Dan B, Jacobsson B, Damiano D (2005) Proposed definition and classification of cerebral palsy. Dev Med Child Neurol 47:571–576

    Article  PubMed  Google Scholar 

  2. Beck S, Houdayer E, Richardson SP, Hallett M (2009) The role of inhibition from the left dorsal premotor cortex in right-sided focal hand dystonia. Brain Stimul 2:208–214

    Article  PubMed  Google Scholar 

  3. Bonnet C, Roubertie A, Doummar D, Bahi-Buisson N, Cochen de Cock V, Roze E (2010) Developmental and benign movement disorders in childhood. Mov Disord 25:1317–1334

    Article  PubMed  Google Scholar 

  4. Brinkman C (1984) Supplementary motor area of the monkey’s cerebral cortex: short- and long-term deficits after unilateral ablation and the effects of subsequent callosal section. J Neurosci 4:918–929

    PubMed  CAS  Google Scholar 

  5. Brinkman C, Porter R (1983) Supplementary motor area and premotor area of monkey cerebral cortex: functional organization and activities of single neurons during performance of a learned movement. Adv Neurol 39:393–420

    PubMed  CAS  Google Scholar 

  6. Capaday C, Forget R, Fraser R, Lamarre Y (1991) Evidence for a contribution of the motor cortex to the long-latency stretch reflex of the human thumb. J Physiol (Lond) 440:243–255

    CAS  Google Scholar 

  7. Carr LJ (1996) Development and reorganization of descending motor pathways in children with hemiplegic cerebral palsy. Acta Paediatr Suppl 416:53–57

    Article  PubMed  CAS  Google Scholar 

  8. Carr LJ, Harrison LM, Evans AL, Stephens JA (1993) Patterns of central motor reorganization in hemiplegic cerebral palsy. Brain 116(Pt 5):1223–1247

    Article  PubMed  Google Scholar 

  9. Carson RG (2005) Neural pathways mediating bilateral interactions between the upper limbs. Brain Res Rev 49:641–662

    Article  PubMed  CAS  Google Scholar 

  10. Cincotta M, Borgheresi A, Boffi P, Vigliano P, Ragazzoni A, Zaccara G, Ziemann U (2002) Bilateral motor cortex output with intended unimanual contraction in congenital mirror movements. Neurology 58:1290–1293

    PubMed  CAS  Google Scholar 

  11. Cincotta M, Lori S, Gangemi PF, Barontini F, Ragazzoni A (1996) Hand motor cortex activation in a patient with congenital mirror movements: a study of the silent period following focal transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol 101:240–246

    Article  PubMed  CAS  Google Scholar 

  12. Cincotta M, Ragazzoni A, de Scisciolo G, Pinto F, Maurri S, Barontini F (1994) Abnormal projection of corticospinal tracts in a patient with congenital mirror movements. Neurophysiol Clin 24:427–434

    Article  PubMed  CAS  Google Scholar 

  13. Cincotta M, Ziemann U (2008) Neurophysiology of unimanual motor control and mirror movements. Clin Neurophysiol 119:744–762

    Article  PubMed  CAS  Google Scholar 

  14. Cincotta M, Borgheresi A, Balzini L, Vannucchi L, Zeloni G, Ragazzoni A, Benvenuti F, Zaccara G, Arnetoli G, Ziemann U (2003) Separate ipsilateral and contralateral corticospinal projections in congenital mirror movements: neurophysiological evidence and significance for motor rehabilitation. Mov Disord 18:1294–1300

    Article  PubMed  Google Scholar 

  15. Cohen LG, Meer J, Tarkka I, Bierner S, Leiderman DB, Dubinsky RM, Sanes JN, Jabbari B, Branscum B, Hallett M (1991) Congenital mirror movements. Abnormal organization of motor pathways in two patients. Brain 114:381–403 (Pt 1B)

    Article  PubMed  Google Scholar 

  16. Danek A, Heye B, Schroedter R (1992) Cortically evoked motor responses in patients with Xp22.3-linked Kallmann’s syndrome and in female gene carriers. Ann Neurol 31:299–304

    Article  PubMed  CAS  Google Scholar 

  17. Debaere F, Wenderoth N, Sunaert S, Van Hecke P, Swinnen SP (2003) Internal vs external generation of movements: differential neural pathways involved in bimanual coordination performed in the presence or absence of augmented visual feedback. Neuroimage 19:764–776

    Article  PubMed  Google Scholar 

  18. Depienne C, Cincotta M, Billot S, Bouteiller D, Groppa S, Brochard V, Flamand C, Hubsch C, Meunier S, Giovannelli F, Klebe S, Corvol JC, Vidailhet M, Brice A, Roze E (2011) A novel DCC mutation and genetic heterogeneity in congenital mirror movements. Neurology 76:260–264

    Article  PubMed  CAS  Google Scholar 

  19. Devito JL, Smith OA (1959) Projections from the mesial frontal cortex (supplementary motor area) to the cerebral hemispheres and brain stem of the Macaca mulatta. J Comp Neurol 111:261–277

    Article  PubMed  CAS  Google Scholar 

  20. Duque J, Mazzocchio R, Dambrosia J, Murase N, Olivier E, Cohen LG (2005) Kinematically specific interhemispheric inhibition operating in the process of generation of a voluntary movement. Cereb Cortex 15:588–593

    Article  PubMed  CAS  Google Scholar 

  21. Farmer SF, Ingram DA, Stephens JA (1990) Mirror movements studied in a patient with Klippel-Feil syndrome. J Physiol (Lond) 428:467–484

    CAS  Google Scholar 

  22. Fellows SJ, Töpper R, Schwarz M, Thilmann AF, Noth J (1996) Stretch reflexes of the proximal arm in a patient with mirror movements: absence of bilateral long-latency components. Electroencephalogr Clin Neurophysiol 101:79–83

    Article  PubMed  CAS  Google Scholar 

  23. Finger JH, Bronson RT, Harris B, Johnson K, Przyborski SA, Ackerman SL (2002) The netrin 1 receptors Unc5h3 and Dcc are necessary at multiple choice points for the guidance of corticospinal tract axons. J Neurosci 22:10346–10356

    PubMed  CAS  Google Scholar 

  24. Foltys H, Sparing R, Boroojerdi B, Krings T, Meister IG, Mottaghy FM, Töpper R (2001) Motor control in simple bimanual movements: a transcranial magnetic stimulation and reaction time study. Clin Neurophysiol 112:265–274

    Article  PubMed  CAS  Google Scholar 

  25. Garvey MA, Ziemann U, Bartko JJ, Denckla MB, Barker CA, Wassermann EM (2003) Cortical correlates of neuromotor development in healthy children. Clin Neurophysiol 114:1662–1670

    Article  PubMed  CAS  Google Scholar 

  26. Gianola S, de Castro F, Rossi F (2009) Anosmin-1 stimulates outgrowth and branching of developing Purkinje axons. Neuroscience 158:570–584

    Article  PubMed  CAS  Google Scholar 

  27. Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A, Paus T, Evans AC, Rapoport JL (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2:861–863

    Article  PubMed  CAS  Google Scholar 

  28. Giovannelli F, Borgheresi A, Balestrieri F, Ragazzoni A, Zaccara G, Cincotta M, Ziemann U (2006) Role of the right dorsal premotor cortex in “physiological” mirror EMG activity. Exp Brain Res 175:633–640

    Article  PubMed  CAS  Google Scholar 

  29. Giovannelli F, Borgheresi A, Balestrieri F, Zaccara G, Viggiano MP, Cincotta M, Ziemann U (2009) Modulation of interhemispheric inhibition by volitional motor activity: an ipsilateral silent period study. J Physiol (Lond) 587:5393–5410

    Article  CAS  Google Scholar 

  30. Goldberg G, Mayer NH, Toglia JU (1981) Medial frontal cortex infarction and the alien hand sign. Arch Neurol 38:683–686

    PubMed  CAS  Google Scholar 

  31. Gonzalez-Monge S, Boudia B, Ritz A, Abbas-Chorfa F, Rabilloud M, Iwaz J, Bérard C (2009) A 7 year longitudinal follow-up of intellectual development in children with congenital hemiplegia. Dev Med Child Neurol 51:959–967

    Article  PubMed  Google Scholar 

  32. Gowen E, Miall RC (2007) Differentiation between external and internal cuing: an fMRI study comparing tracing with drawing. Neuroimage 36:396–410

    Article  PubMed  CAS  Google Scholar 

  33. Haerer AF, Currier RD (1966) Mirror movements. Neurology 16:757–760

    Google Scholar 

  34. Hamada M, Hanajima R, Terao Y, Okabe S, Nakatani-Enomoto S, Furubayashi T, Matsumoto H, Shirota Y, Ohminami S, Ugawa Y (2009) Primary motor cortical metaplasticity induced by priming over the supplementary motor area. J Physiol (Lond) 587:4845–4862

    Article  CAS  Google Scholar 

  35. Harrington A, Oepen G (1989) “Whole brain” politics and brain laterality research. Eur Arch Psychiatry Neurol Sci 239:141–143

    Article  PubMed  CAS  Google Scholar 

  36. Heinen F, Glocker FX, Fietzek U, Meyer BU, Lücking CH, Korinthenberg R (1998) Absence of transcallosal inhibition following focal magnetic stimulation in preschool children. Ann Neurol 43:608–612

    Article  PubMed  CAS  Google Scholar 

  37. Hübers A, Orekhov Y, Ziemann U (2008) Interhemispheric motor inhibition: its role in controlling electromyographic mirror activity. Eur J Neurosci 28:364–371

    Article  PubMed  Google Scholar 

  38. Huttenlocher PR, Dabholkar AS (1997) Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 387:167–178

    Article  PubMed  CAS  Google Scholar 

  39. Innocenti GM (1994) Some new trends in the study of the corpus callosum. Behav Brain Res 64:1–8

    Article  PubMed  CAS  Google Scholar 

  40. Kaplan JD, Bernstein JA, Kwan A, Hudgins L (2010) Clues to an early diagnosis of Kallmann syndrome. Am J Med Genet A 152A:2796–2801

    Article  PubMed  Google Scholar 

  41. Karol EA, Pandya DN (1971) The distribution of the corpus callosum in the Rhesus monkey. Brain 94:471–486

    Article  PubMed  CAS  Google Scholar 

  42. Keino-Masu K, Masu M, Hinck L, Leonardo ED, Chan SS, Culotti JG, Tessier-Lavigne M (1996) Deleted in colorectal cancer (DCC) encodes a netrin receptor. Cell 87:175–185

    Article  PubMed  CAS  Google Scholar 

  43. Killeen MT, Sybingco SS (2008) Netrin, Slit and Wnt receptors allow axons to choose the axis of migration. Dev Biol 323:143–151

    Article  PubMed  CAS  Google Scholar 

  44. Klein C, Djarmati A, Brueggemann N, Espay AJ, Bhatia KP (2011) Genetical heterogeneity of congenital mirror movement. Neurology (in press)

  45. Koeneke S, Lutz K, Wüstenberg T, Jäncke L (2004) Bimanual versus unimanual coordination: what makes the difference? Neuroimage 22:1336–1350

    Article  PubMed  Google Scholar 

  46. Koenigkam-Santos M, Santos AC, Borduqui T, Versiani BR, Hallak JEC, Crippa JAS, Castro M (2008) Whole-brain voxel-based morphometry in Kallmann syndrome associated with mirror movements. Am J Neuroradiol 29:1799–1804

    Article  PubMed  CAS  Google Scholar 

  47. Koerte I, Eftimov L, Laubender RP, Esslinger O, Schroeder AS, Ertl-Wagner B, Wahllaender-Danek U, Heinen F, Danek A (2010) Mirror movements in healthy humans across the lifespan: effects of development and ageing. Dev Med Child Neurol 52:1106–1112

    Article  PubMed  Google Scholar 

  48. Koerte I, Pelavin P, Kirmess B, Fuchs T, Berweck S, Laubender RP, Borggraefe I, Schroeder S, Danek A, Rummeny C, Reiser M, Kubicki M, Shenton ME, Ertl-Wagner B, Heinen F (2011) Anisotropy of transcallosal motor fibres indicates functional impairment in children with periventricular leukomalacia. Dev Med Child Neurol 53:179–186

    Article  PubMed  Google Scholar 

  49. Krams M, Quinton R, Ashburner J, Friston KJ, Frackowiak RS, Bouloux PM, Passingham RE (1999) Kallmann’s syndrome: mirror movements associated with bilateral corticospinal tract hypertrophy. Neurology 52:816–822

    PubMed  CAS  Google Scholar 

  50. Krams M, Quinton R, Mayston MJ, Harrison LM, Dolan RJ, Bouloux PM, Stephens JA, Frackowiak RS, Passingham RE (1997) Mirror movements in X-linked Kallmann’s syndrome II. A PET study. Brain 120(Pt 7):1217–1228

    Article  PubMed  Google Scholar 

  51. Lazarus JA, Todor JI (1991) The role of attention in the regulation of associated movement in children. Dev Med Child Neurol 33:32–39

    Article  PubMed  CAS  Google Scholar 

  52. Leinsinger GL, Heiss DT, Jassoy AG, Pfluger T, Hahn K, Danek A (1997) Persistent mirror movements: functional MR imaging of the hand motor cortex. Radiology 203:545–552

    PubMed  CAS  Google Scholar 

  53. Lemon RN, Maier MA, Armand J, Kirkwood PA, Yang HW (2002) Functional differences in corticospinal projections from macaque primary motor cortex and supplementary motor area. Adv Exp Med Biol 508:425–434

    Article  PubMed  Google Scholar 

  54. Liepert J, Dettmers C, Terborg C, Weiller C (2001) Inhibition of ipsilateral motor cortex during phasic generation of low force. Clin Neurophysiol 112:114–121

    Article  PubMed  CAS  Google Scholar 

  55. Mayston MJ, Harrison LM, Quinton R, Stephens JA, Krams M, Bouloux PM (1997) Mirror movements in X-linked Kallmann’s syndrome I. A neurophysiological study. Brain 120(Pt 7):1199–1216

    Article  PubMed  Google Scholar 

  56. Mayston MJ, Harrison LM, Stephens JA (1999) A neurophysiological study of mirror movements in adults and children. Ann Neurol 45:583–594

    Article  PubMed  CAS  Google Scholar 

  57. Metman LV, Bellevich JS, Jones SM, Barber MD, Streletz LJ (1993) Topographic mapping of human motor cortex with transcranial magnetic stimulation: homunculus revisited. Brain Topogr 6:13–19

    Article  PubMed  CAS  Google Scholar 

  58. Nass R (1985) Mirror movement asymmetries in congenital hemiparesis: the inhibition hypothesis revisited. Neurology 35:1059–1062

    PubMed  CAS  Google Scholar 

  59. Njiokiktjien C, Driessen M, Habraken L (1986) Development of supination–pronation movements in normal children. Hum Neurobiol 5:199–203

    PubMed  CAS  Google Scholar 

  60. Pandya DN, Vignolo LA (1971) Intra- and interhemispheric projections of the precentral, premotor and arcuate areas in the Rhesus monkey. Brain Res 26:217–233

    PubMed  CAS  Google Scholar 

  61. Perrig S, Kazennikov O, Wiesendanger M (1999) Time structure of a goal-directed bimanual skill and its dependence on task constraints. Behav Brain Res 103:95–104

    Article  PubMed  CAS  Google Scholar 

  62. Regli F, Filippa G, Wiesendanger M (1967) Hereditary mirror movements. Arch Neurol 16:620–623

    PubMed  CAS  Google Scholar 

  63. Rizzolatti G, Luppino G (2001) The cortical motor system. Neuron 31:889–901

    Article  PubMed  CAS  Google Scholar 

  64. Rizzolatti G, Luppino G, Matelli M (1998) The organization of the cortical motor system: new concepts. Electroencephalogr Clin Neurophysiol 106:283–296

    Article  PubMed  CAS  Google Scholar 

  65. Royal SA, Tubbs RS, D’Antonio MG, Rauzzino MJ, Oakes WJ (2002) Investigations into the association between cervicomedullary neuroschisis and mirror movements in patients with Klippel-Feil syndrome. Am J Neuroradiol 23:724–729

    PubMed  Google Scholar 

  66. Sadato N, Yonekura Y, Waki A, Yamada H, Ishii Y (1997) Role of the supplementary motor area and the right premotor cortex in the coordination of bimanual finger movements. J Neurosci 17:9667–9674

    PubMed  CAS  Google Scholar 

  67. Schott GD, Wyke MA (1981) Congenital mirror movements. J Neurol Neurosurg Psychiatr 44:586–599

    Article  PubMed  CAS  Google Scholar 

  68. Serrien DJ, Bogaerts H, Suy E, Swinnen SP (1999) The identification of coordination constraints across planes of motion. Exp Brain Res 128:250–255

    Article  PubMed  CAS  Google Scholar 

  69. Serrien DJ, Wiesendanger M (2000) Temporal control of a bimanual task in patients with cerebellar dysfunction. Neuropsychologia 38:558–565

    Article  PubMed  CAS  Google Scholar 

  70. Sharafaddinzadeh N, Bavarsad R, Yousefkhah M, Aleali AM (2008) Familial mirror movements over five generations. Neurol India 56:482–483

    Article  PubMed  Google Scholar 

  71. Shibasaki H, Nagae K (1984) Mirror movement: application of movement-related cortical potentials. Ann Neurol 15:299–302

    Article  PubMed  CAS  Google Scholar 

  72. Shibasaki H, Hallett M (2006) What is the Bereitschaftspotential? Clin Neurophysiol 117:2341–2356

    Article  PubMed  Google Scholar 

  73. Soussi-Yanicostas N, de Castro F, Julliard AK, Perfettini I, Chédotal A, Petit C (2002) Anosmin-1, defective in the X-linked form of Kallmann syndrome, promotes axonal branch formation from olfactory bulb output neurons. Cell 109:217–228

    Article  PubMed  CAS  Google Scholar 

  74. Srour M, Philibert M, Dion M-H, Duquette A, Richer F, Rouleau GA, Chouinard S (2009) Familial congenital mirror movements: report of a large 4-generation family. Neurology 73:729–731

    Article  PubMed  CAS  Google Scholar 

  75. Staudt M, Pieper T, Grodd W, Winkler P, Holthausen H, Krägeloh-Mann I (2001) Functional MRI in a 6 year-old boy with unilateral cortical malformation: concordant representation of both hands in the unaffected hemisphere. Neuropediatrics 32:159–161

    Article  PubMed  CAS  Google Scholar 

  76. Staudt M, Grodd W, Gerloff C, Erb M, Stitz J, Krägeloh-Mann I (2002) Two types of ipsilateral reorganization in congenital hemiparesis: a TMS and fMRI study. Brain 125:2222–2237

    Article  PubMed  Google Scholar 

  77. Stinear CM, Fleming MK, Byblow WD (2006) Lateralization of unimanual and bimanual motor imagery. Brain Res 1095:139–147

    Article  PubMed  CAS  Google Scholar 

  78. Stucchi N, Viviani P (1993) Cerebral dominance and asynchrony between bimanual two-dimensional movements. J Exp Psychol Hum Percept Perform 19:1200–1220

    Article  PubMed  CAS  Google Scholar 

  79. Swinnen SP, Walter CB, Lee TD, Serrien DJ (1993) Acquiring bimanual skills: contrasting forms of information feedback for interlimb decoupling. J Exp Psychol Learn Mem Cogn 19:1328–1344

    Article  PubMed  CAS  Google Scholar 

  80. Tanji J (1996) New concepts of the supplementary motor area. Curr Opin Neurobiol 6:782–787

    Article  PubMed  CAS  Google Scholar 

  81. Tassabehji M, Fang ZM, Hilton EN, McGaughran J, Zhao Z, de Bock CE, Howard E, Malass M, Donnai D, Diwan A, Manson FDC, Murrell D, Clarke RA (2008) Mutations in GDF6 are associated with vertebral segmentation defects in Klippel-Feil syndrome. Hum Mutat 29:1017–1027

    Article  PubMed  CAS  Google Scholar 

  82. Vandermeeren Y, Davare M, Duque J, Olivier E (2009) Reorganization of cortical hand representation in congenital hemiplegia. Eur J Neurosci 29:845–854

    Article  PubMed  Google Scholar 

  83. Verstynen T, Spencer R, Stinear CM, Konkle T, Diedrichsen J, Byblow WD, Ivry RB (2007) Ipsilateral corticospinal projections do not predict congenital mirror movements: a case report. Neuropsychologia 45:844–852

    Article  PubMed  CAS  Google Scholar 

  84. Waber DP, Mann MB, Merola J (1985) Motor overflow and attentional processes in normal school-age children. Dev Med Child Neurol 27:491–497

    Article  PubMed  CAS  Google Scholar 

  85. Wahl M, Lauterbach-Soon B, Hattingen E, Jung P, Singer O, Volz S, Klein JC, Steinmetz H, Ziemann U (2007) Human motor corpus callosum: topography, somatotopy, and link between microstructure and function. J Neurosci 27:12132–12138

    Article  PubMed  CAS  Google Scholar 

  86. Walsh RR, Small SL, Chen EE, Solodkin A (2008) Network activation during bimanual movements in humans. Neuroimage 43:540–553

    Article  PubMed  CAS  Google Scholar 

  87. Wassermann EM, Fuhr P, Cohen LG, Hallett M (1991) Effects of transcranial magnetic stimulation on ipsilateral muscles. Neurology 41:1795–1799

    PubMed  CAS  Google Scholar 

  88. Wenderoth N, Puttemans V, Vangheluwe S, Swinnen SP (2003) Bimanual training reduces spatial interference. J Mot Behav 35:296–308

    Article  PubMed  Google Scholar 

  89. Wexler BE, Fulbright RK, Lacadie CM, Skudlarski P, Kelz MB, Constable RT, Gore JC (1997) An fMRI study of the human cortical motor system response to increasing functional demands. Magn Reson Imaging 15:385–396

    Article  PubMed  CAS  Google Scholar 

  90. Wiesendanger M, Serrien DJ (2004) The quest to understand bimanual coordination. Prog Brain Res 143:491–505

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Vanessa Brochard and Constance Flaman-Roze for helping in the preparation of the manuscript.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Roze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galléa, C., Popa, T., Billot, S. et al. Congenital mirror movements: a clue to understanding bimanual motor control. J Neurol 258, 1911–1919 (2011). https://doi.org/10.1007/s00415-011-6107-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-011-6107-9

Keywords

Navigation