Skip to main content

Advertisement

Log in

The phenotypic spectrum of neutral lipid storage myopathy due to mutations in the PNPLA2 gene

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Neutral lipid storage disease is caused by mutations in the CGI-58 or the PNPLA2 genes. Lipid storage can be detected in various cell types including blood granulocytes. While CGI-58 mutations are associated with Chanarin–Dorfman syndrome, a condition characterized by lipid storage and skin involvement (ichthyosis), mutations in the patatin-like phospholipase domain-containing protein 2 gene (PNPLA2) were reported with skeletal and cardiac muscle disease only. We describe clinical, myopathological, magnetic resonance imaging (MRI), and genetic findings of six patients carrying different recessive PNPLA2 mutations. Pulse-chase labeling of control and patient cells with supplementation of clenbuterol, salmeterol, and dexamethasone was performed in vitro. The patients share a recognizable phenotype with prominent shoulder girdle weakness and mild pelvic girdle and distal muscle weakness, with highly elevated creatine kinase (CK) and cardiomyopathy developing at later stages. Muscle histology invariably reveals massive accumulation of lipid droplets. New muscle or whole-body MRI techniques may assist diagnosis and may become a useful tool to quantify intramuscular lipid storage. Four novel and two previously reported mutations were detected, affecting different parts of the PNPLA2 gene. Activation of hormone-sensitive lipase by beta-adrenergic substances such as clenbuterol appears to bypass the enzymatic block in PNPLA2-deficient patient cells in vitro. PNPLA2 deficiency is a slowly progressive myopathy with onset around the third decade. Cardiac involvement is relatively common at a later stage. Muscle MRI may detect increased lipid in a characteristic distribution, which could be used for monitoring disease progression. Beta-adrenergic agents may be beneficial in improving triacylglycerol breakdown in patients with PNPLA2 mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Laforet P, Vianey-Saban C (2010) Disorders of muscle lipid metabolism: diagnostic and therapeutic challenges. Neuromuscul Disord 20:693–700

    Article  PubMed  Google Scholar 

  2. Bruno C, Dimauro S (2008) Lipid storage myopathies. Curr Opin Neurol 21:601–606

    Article  PubMed  CAS  Google Scholar 

  3. Gempel K, Topaloglu H, Talim B et al (2007) The myopathic form of coenzyme Q10 deficiency is caused by mutations in the electron-transferring-flavoprotein dehydrogenase (ETFDH) gene. Brain 130:2037–2044

    Article  PubMed  Google Scholar 

  4. Olsen RK, Olpin SE, Andresen BS et al (2007) ETFDH mutations as a major cause of riboflavin-responsive multiple acyl-CoA dehydrogenation deficiency. Brain 130:2045–2054

    Article  PubMed  Google Scholar 

  5. Nezu J, Tamai I, Oku A et al (1999) Primary systemic carnitine deficiency is caused by mutations in a gene encoding sodium ion-dependent carnitine transporter. Nat Genet 21:91–94

    Article  PubMed  CAS  Google Scholar 

  6. Dorfman ML, Hershko C, Eisenberg S et al (1974) Ichthyosiform dermatosis with systemic lipidosis. Arch Dermatol 110:261–266

    Article  PubMed  CAS  Google Scholar 

  7. Srebrnik A, Tur E, Perluk C et al (1987) Dorfman–Chanarin syndrome. A case report and a review. J Am Acad Dermatol 17:801–808

    Article  PubMed  CAS  Google Scholar 

  8. Lefevre C, Jobard F, Caux F et al (2001) Mutations in CGI-58, the gene encoding a new protein of the esterase/lipase/thioesterase subfamily, in Chanarin–Dorfman syndrome. Am J Hum Genet 69:1002–1012

    Article  PubMed  CAS  Google Scholar 

  9. Chanarin I, Patel A, Slavin G et al (1975) Neutral-lipid storage disease: a new disorder of lipid metabolism. Br Med J 1:553–555

    Article  PubMed  CAS  Google Scholar 

  10. Yamaguchi T, Osumi T (2009) Chanarin–Dorfman syndrome: deficiency in CGI-58, a lipid droplet-bound coactivator of lipase. Biochim Biophys Acta 1791:519–523

    PubMed  CAS  Google Scholar 

  11. Fischer J, Lefevre C, Morava E et al (2007) The gene encoding adipose triglyceride lipase (PNPLA2) is mutated in neutral lipid storage disease with myopathy. Nat Genet 39:28–30

    Article  PubMed  CAS  Google Scholar 

  12. Jordans GH (1953) The familial occurrence of fat containing vacuoles in the leukocytes diagnosed in two brothers suffering from dystrophia musculorum progressiva (ERB.). Acta Med Scand 145:419–423

    Article  PubMed  CAS  Google Scholar 

  13. Rozenszajn L, Klajman A, Yaffe D et al (1966) Jordans’ anomaly in white blood cells. Report of case. Blood 28:258–265

    PubMed  CAS  Google Scholar 

  14. Lass A, Zimmermann R, Haemmerle G et al (2006) Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin–Dorfman Syndrome. Cell Metab 3:309–319

    Article  PubMed  CAS  Google Scholar 

  15. Zimmermann R, Strauss JG, Haemmerle G et al (2004) Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306:1383–1386

    Article  PubMed  CAS  Google Scholar 

  16. Jenkins CM, Mancuso DJ, Yan W et al (2004) Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J Biol Chem 279:48968–48975

    Article  PubMed  CAS  Google Scholar 

  17. Schweiger M, Schreiber R, Haemmerle G et al (2006) Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism. J Biol Chem 281:40236–44024

    Article  PubMed  CAS  Google Scholar 

  18. Ohkuma A, Nonaka I, Malicdan MC et al (2008) Distal lipid storage myopathy due to PNPLA2 mutation. Neuromuscul Disord 18:671–674

    Article  PubMed  Google Scholar 

  19. Schweiger M, Lass A, Zimmermann R et al (2009) Neutral lipid storage disease: genetic disorders caused by mutations in adipose triglyceride lipase/PNPLA2 or CGI-58/ABHD5. Am J Physiol Endocrinol Metab 297:E289–E296

    Article  PubMed  CAS  Google Scholar 

  20. Hirano K, Ikeda Y, Zaima N et al (2008) Triglyceride deposit cardiomyovasculopathy. N Engl J Med 359:2396–2398

    Article  PubMed  CAS  Google Scholar 

  21. Schroder JM, Hoheneck M, Weis J et al (1985) Ethylene oxide polyneuropathy: clinical follow-up study with morphometric and electron microscopic findings in a sural nerve biopsy. J Neurol 232:83–90

    Article  PubMed  CAS  Google Scholar 

  22. Weis J, Schroder JM (1988) Adult polyglucosan body myopathy with subclinical peripheral neuropathy: case report and review of diseases associated with polyglucosan body accumulation. Clin Neuropathol 7:271–279

    PubMed  CAS  Google Scholar 

  23. Weis J, Kaussen M, Calvo S et al (2000) Denervation induces a rapid nuclear accumulation of MRF4 in mature myofibers. Dev Dyn 218:438–451

    Article  PubMed  CAS  Google Scholar 

  24. Weis J, Schroder JM (1989) Differential effects of nerve, muscle, and fat tissue on regenerating nerve fibers in vivo. Muscle Nerve 12:723–734

    Article  PubMed  CAS  Google Scholar 

  25. Fischer JC, Ruitenbeek W, Gabreels FJ et al (1986) A mitochondrial encephalomyopathy: the first case with an established defect at the level of coenzyme Q. Eur J Pediatr 144:441–444

    Article  PubMed  CAS  Google Scholar 

  26. Goodman SI, Binard RJ, Woontner MR et al (2002) Glutaric acidemia type II: gene structure and mutations of the electron transfer flavoprotein:ubiquinone oxidoreductase (ETF:QO) gene. Mol Genet Metab 77:86–90

    Article  PubMed  CAS  Google Scholar 

  27. Kobayashi K, Inoguchi T, Maeda Y et al (2008) The lack of the C-terminal domain of adipose triglyceride lipase causes neutral lipid storage disease through impaired interactions with lipid droplets. J Clin Endocrinol Metab 93:2877–2884

    Article  PubMed  CAS  Google Scholar 

  28. Szczepaniak LS, Nurenberg P, Leonard D et al (2005) Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am J Physiol Endocrinol Metab 288:E462–E468

    Article  PubMed  CAS  Google Scholar 

  29. Langin D (2006) Adipose tissue lipolysis as a metabolic pathway to define pharmacological strategies against obesity and the metabolic syndrome. Pharmacol Res 53:482–491

    Article  PubMed  CAS  Google Scholar 

  30. Villena JA, Roy S, Sarkadi-Nagy E et al (2004) Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids: ectopic expression of desnutrin increases triglyceride hydrolysis. J Biol Chem 279:47066–47075

    Article  PubMed  CAS  Google Scholar 

  31. Akman HO, Davidzon G, Tanji K et al (2010) Neutral lipid storage disease with subclinical myopathy due to a retrotransposal insertion in the PNPLA2 gene. Neuromuscul Disord 20:397–402

    Article  PubMed  Google Scholar 

  32. Campagna F, Nanni L, Quagliarini F et al (2008) Novel mutations in the adipose triglyceride lipase gene causing neutral lipid storage disease with myopathy. Biochem Biophys Res Commun 377:843–846

    Article  PubMed  CAS  Google Scholar 

  33. Akiyama M, Sakai K, Ogawa M et al (2007) Novel duplication mutation in the patatin domain of adipose triglyceride lipase (PNPLA2) in neutral lipid storage disease with severe myopathy. Muscle Nerve 36:856–859

    Article  PubMed  CAS  Google Scholar 

  34. Ohkuma A, Noguchi S, Sugie H et al (2009) Clinical and genetic analysis of lipid storage myopathies. Muscle Nerve 39:333–342

    Article  PubMed  Google Scholar 

  35. Di Mauro S, Trevisan C, Hays A (1980) Disorders of lipid metabolism in muscle. Muscle Nerve 3:369–388

    Article  PubMed  CAS  Google Scholar 

  36. Ogasawara J, Nomura S, Rahman N et al (2010) Hormone-sensitive lipase is critical mediators of acute exercise-induced regulation of lipolysis in rat adipocytes. Biochem Biophys Res Commun 400:134–139

    Article  PubMed  CAS  Google Scholar 

  37. Lu X, Yang X, Liu J (2010) Differential control of ATGL-mediated lipid droplet degradation by CGI-58 and G0S2. Cell Cycle 9:2719–2725

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Medical Research Council Translational Neuromuscular Centre. R.H. was supported by the Academy of Medical Sciences, UK (BH090164) and the Medical Research Council, UK (G1000848). The Muscle Tissue Culture Collection is part of the German Network on Muscular Dystrophies (MD-NET, service structure S1, 01GM0601) funded by the German Ministry of Education and Research (BMBF, Bonn, Germany). The Muscle Tissue Culture Collection is a partner of EuroBioBank (http://www.eurobiobank.org) and TREAT-NMD (EC, 6th FP, proposal #036825). This work was supported by a SysMBo TP11 grant (BMBF, Bonn, Germany) to B.S.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Horvath.

Additional information

P. Reilich, R. Horvath, and S. Krause contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOCX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reilich, P., Horvath, R., Krause, S. et al. The phenotypic spectrum of neutral lipid storage myopathy due to mutations in the PNPLA2 gene. J Neurol 258, 1987–1997 (2011). https://doi.org/10.1007/s00415-011-6055-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-011-6055-4

Keywords

Navigation