Skip to main content
Log in

EEG low-resolution brain electromagnetic tomography (LORETA) in Huntington’s disease

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Previous studies have shown abnormal electroencephalography (EEG) in Huntington’s disease (HD). The aim of the present investigation was to compare quantitatively analyzed EEGs of HD patients and controls by means of low-resolution brain electromagnetic tomography (LORETA). Further aims were to delineate the sensitivity and utility of EEG LORETA in the progression of HD, and to correlate parameters of cognitive and motor impairment with neurophysiological variables. In 55 HD patients and 55 controls a 3-min vigilance-controlled EEG (V-EEG) was recorded during midmorning hours. Power spectra and intracortical tomography were computed by LORETA in seven frequency bands and compared between groups. Spearman rank correlations were based on V-EEG and psychometric data. Statistical overall analysis by means of the omnibus significance test demonstrated significant (p < 0.01) differences between HD patients and controls. LORETA theta, alpha and beta power were decreased from early to late stages of the disease. Only advanced disease stages showed a significant increase in delta power, mainly in the right orbitofrontal cortex. Correlation analyses revealed that a decrease of alpha and theta power correlated significantly with increasing cognitive and motor decline. LORETA proved to be a sensitive instrument for detecting progressive electrophysiological changes in HD. Reduced alpha power seems to be a trait marker of HD, whereas increased prefrontal delta power seems to reflect worsening of the disease. Motor function and cognitive function deteriorate together with a decrease in alpha and theta power. This data set, so far the largest in HD research, helps to elucidate remaining uncertainties about electrophysiological abnormalities in HD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rosas HD, Koroshetz WJ, Chen YI, Skeuse C, Vangel M, Cudkowicz ME, Caplan K, Marek K, Seidman LJ, Makris N, Jenkins BG, Goldstein JM (2003) Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology 60:1615–1620

    PubMed  CAS  Google Scholar 

  2. Rosas HD, Liu AK, Hersch S, Glessner M, Ferrante RJ, Salat DH, van der Kouwe A, Jenkins BG, Dale AM, Fischl B (2002) Regional and progressive thinning of the cortical ribbon in Huntington’s disease. Neurology 58:695–701

    PubMed  CAS  Google Scholar 

  3. Aylward EH, Li Q, Stine OC, Ranen N, Sherr M, Barta PE, Bylsma FW, Pearlson GD, Ross CA (1997) Longitudinal change in basal ganglia volume in patients with Huntington’s disease. Neurology 48:394–399

    PubMed  CAS  Google Scholar 

  4. Hasselbalch SG, Oberg G, Sorensen SA, Andersen AR, Waldemar G, Schmidt JF, Fenger K, Paulson OB (1992) Reduced regional cerebral blood flow in Huntington’s disease studied by SPECT. J Neurol Neurosurg Psychiatry 55:1018–1023

    Article  PubMed  CAS  Google Scholar 

  5. Kassubek J, Juengling FD, Kioschies T, Henkel K, Karitzky J, Kramer B, Ecker D, Andrich J, Saft C, Kraus P, Aschoff AJ, Ludolph AC, Landwehrmeyer GB (2004) Topography of cerebral atrophy in early Huntington’s disease: a voxel based morphometric MRI study. J Neurol Neurosurg Psychiatry 75:213–220

    PubMed  CAS  Google Scholar 

  6. Kassubek J, Bernhard Landwehrmeyer G, Ecker D, Juengling FD, Muche R, Schuller S, Weindl A, Peinemann A (2004) Global cerebral atrophy in early stages of Huntington’s disease: quantitative MRI study. Neuroreport 15:363–365

    Article  PubMed  Google Scholar 

  7. Aylward EH, Anderson NB, Bylsma FW, Wagster MV, Barta PE, Sherr M, Feeney J, Davis A, Rosenblatt A, Pearlson GD, Ross CA (1998) Frontal lobe volume in patients with Huntington’s disease. Neurology 50:252–258

    PubMed  CAS  Google Scholar 

  8. Halliday GM, McRitchie DA, Macdonald V, Double KL, Trent RJ, McCusker E (1998) Regional specificity of brain atrophy in Huntington’s disease. Exp Neurol 154:663–672

    Article  PubMed  CAS  Google Scholar 

  9. Sotrel A, Paskevich PA, Kiely DK, Bird ED, Williams RS, Myers RH (1991) Morphometric analysis of the prefrontal cortex in Huntington’s disease. Neurology 41:1117–1123

    PubMed  CAS  Google Scholar 

  10. Hedreen JC, Peyser CE, Folstein SE, Ross CA (1991) Neuronal loss in layers V and VI of cerebral cortex in Huntington’s disease. Neurosci Lett 133:257–261

    Article  PubMed  CAS  Google Scholar 

  11. Mann DM, Oliver R, Snowden JS (1993) The topographic distribution of brain atrophy in Huntington’s disease and progressive supranuclear palsy. Acta Neuropathol 85:553–559

    PubMed  CAS  Google Scholar 

  12. Rosas HD, Salat DH, Lee SY, Zaleta AK, Pappu V, Fischl B, Greve D, Hevelone N, Hersch SM (2008) Cerebral cortex and the clinical expression of Huntington’s disease: complexity and heterogeneity. Brain 131:1057–1068

    Article  PubMed  Google Scholar 

  13. Starkstein SE, Brandt J, Bylsma F, Peyser C, Folstein M, Folstein SE (1992) Neuropsychological correlates of brain atrophy in Huntington’s disease: a magnetic resonance imaging study. Neuroradiology 34:487–489

    Article  PubMed  CAS  Google Scholar 

  14. Starkstein SE, Brandt J, Folstein S, Strauss M, Berthier ML, Pearlson GD, Wong D, McDonnell A, Folstein M (1988) Neuropsychological and neuroradiological correlates in Huntington’s disease. J Neurol Neurosurg Psychiatry 51:1259–1263

    Article  PubMed  CAS  Google Scholar 

  15. Lefaucheur JP, Bachoud-Levi AC, Bourdet C, Grandmougin T, Hantraye P, Cesaro P, Degos JD, Peschanski M, Lisovoski F (2002) Clinical relevance of electrophysiological tests in the assessment of patients with Huntington’s disease. Mov Disord 17:1294–1301

    Article  PubMed  Google Scholar 

  16. Streletz LJ, Reyes PF, Zalewska M, Katz L, Fariello RG (1990) Computer analysis of EEG activity in dementia of the Alzheimer’s type and Huntington’s disease. Neurobiol Aging 11:15–20

    Article  PubMed  CAS  Google Scholar 

  17. Bylsma FW, Peyser CE, Folstein SE, Folstein MF, Ross C, Brandt J (1994) EEG power spectra in Huntington’s disease: clinical and neuropsychological correlates. Neuropsychologia 32:137–150

    Article  PubMed  CAS  Google Scholar 

  18. Bellotti R, De Carlo F, Massafra R, de Tommaso M, Sciruicchio V (2004) Topographic classification of EEG patterns in Huntington’s disease. Neurol Clin Neurophysiol 2004:37

    PubMed  CAS  Google Scholar 

  19. de Tommaso M, De Carlo F, Difruscolo O, Massafra R, Sciruicchio V, Bellotti R (2003) Detection of subclinical brain electrical activity changes in Huntington’s disease using artificial neural networks. Clin Neurophysiol 114:1237–1245

    Article  PubMed  Google Scholar 

  20. Sishta SK, Troupe A, Marszalek KS, Kremer LM (1974) Huntington’s chorea: an electroencephalographic and psychometric study. Electroencephalogr Clin Neurophysiol 36:387–393

    Article  PubMed  CAS  Google Scholar 

  21. Scott DF, Heathfield KW, Toone B, Margerison JH (1972) The EEG in Huntington’s chorea: a clinical and neuropathological study. J Neurol Neurosurg Psychiatry 35:97–102

    Article  PubMed  CAS  Google Scholar 

  22. Kassubek J, Juengling FD, Ecker D, Landwehrmeyer GB (2005) Thalamic atrophy in Huntington’s disease co-varies with cognitive performance: a morphometric MRI analysis. Cereb Cortex 15:846–853

    Article  PubMed  Google Scholar 

  23. Margerison JH, Scott DF (1965) Huntington’s chorea: clinical, EEG and neuropathological findings. Electroencephalogr Clin Neurophysiol 19:314–316

    Article  Google Scholar 

  24. Foster DB, Bagchi BK (1949) Electroencephalographic observations in Huntington’s chorea. Electroencephalogr Clin Neurophysiol 1:247–248

    Google Scholar 

  25. Painold A, Anderer P, Holl AK, Letmaier M, Saletu-Zyhlarz GM, Saletu B, Bonelli RM (2010) Comparative EEG mapping studies in Huntington’s disease patients and controls. J Neural Transm 117:1307–1318

    Google Scholar 

  26. Babiloni C, Binetti G, Cassarino A, Dal Forno G, Del Percio C, Ferreri F, Ferri R, Frisoni G, Galderisi S, Hirata K, Lanuzza B, Miniussi C, Mucci A, Nobili F, Rodriguez G, Luca Romani G, Rossini PM (2006) Sources of cortical rhythms in adults during physiological aging: a multicentric EEG study. Hum Brain Mapp 27:162–172

    Article  PubMed  Google Scholar 

  27. Anderer P, Saletu B, Pascual-Marqui RD, Semlitsch HV (2000) EEG and ERP topography and tomography in normal aging. In: Saletu B, Krijzer F, Ferber G, Anderer P (eds) Electrophysiological brain research in preclinical and clinical pharmacology and related fields–an update. Facultas, Wien, pp 122–138

    Google Scholar 

  28. Van Sweden B, Wauquier A, Niedermeyer E (1999) Normal aging and transient cognitive disorders in the elderly. In: Niedermeyer E, Da Silva FL (eds) Electroencephalography: basic principles, clinical applications and related fields, 4th edn. Williams & Wilkins, Baltimore, pp 340–348

    Google Scholar 

  29. Prichep LS (2007) Quantitative EEG and electromagnetic brain imaging in aging and in the evolution of dementia. Ann N Y Acad Sci 1097:156–167

    Article  PubMed  Google Scholar 

  30. Prichep LS, John ER, Ferris SH, Reisberg B, Almas M, Alper K, Cancro R (1994) Quantitative EEG correlates of cognitive deterioration in the elderly. Neurobiol Aging 15:85–90

    Article  PubMed  CAS  Google Scholar 

  31. Brunovsky M, Matousek M, Edman A, Cervena K, Krajca V (2003) Objective assessment of the degree of dementia by means of EEG. Neuropsychobiology 48:19–26

    Article  PubMed  Google Scholar 

  32. Dierks T, Perisic I, Frolich L, Ihl R, Maurer K (1991) Topography of the quantitative electroencephalogram in dementia of the Alzheimer type: relation to severity of dementia. Psychiatry Res 40:181–194

    Article  PubMed  CAS  Google Scholar 

  33. Helkala EL, Laulumaa V, Soikkeli R, Partanen J, Soininen H, Riekkinen PJ (1991) Slow-wave activity in the spectral analysis of the electroencephalogram is associated with cortical dysfunctions in patients with Alzheimer’s disease. Behav Neurosci 105:409–415

    Article  PubMed  CAS  Google Scholar 

  34. Rice DM, Buchsbaum MS, Starr A, Auslander L, Hagman J, Evans WJ (1990) Abnormal EEG slow activity in left temporal areas in senile dementia of the Alzheimer type. J Gerontol 45:M145–M151

    PubMed  CAS  Google Scholar 

  35. John ER, Prichep LS, Fridman J, Easton P (1988) Neurometrics: computer-assisted differential diagnosis of brain dysfunctions. Science 239:162–169

    Article  PubMed  CAS  Google Scholar 

  36. Anderer P, Saletu B, Kloppel B, Semlitsch HV, Werner H (1994) Discrimination between demented patients and normals based on topographic EEG slow wave activity: comparison between z statistics, discriminant analysis and artificial neural network classifiers. Electroencephalogr Clin Neurophysiol 91:108–117

    Article  PubMed  CAS  Google Scholar 

  37. Gianotti LR, Kunig G, Lehmann D, Faber PL, Pascual-Marqui RD, Kochi K, Schreiter-Gasser U (2007) Correlation between disease severity and brain electric LORETA tomography in Alzheimer’s disease. Clin Neurophysiol 118:186–196

    Article  PubMed  Google Scholar 

  38. Mattia D, Babiloni F, Romigi A, Cincotti F, Bianchi L, Sperli F, Placidi F, Bozzao A, Giacomini P, Floris R, Grazia Marciani M (2003) Quantitative EEG and dynamic susceptibility contrast MRI in Alzheimer’s disease: a correlative study. Clin Neurophysiol 114:1210–1216

    Article  PubMed  Google Scholar 

  39. Saletu B, Anderer P, Saletu-Zyhlarz GM, Pascual-Marqui RD (2005) EEG mapping and low-resolution brain electromagnetic tomography (LORETA) in diagnosis and therapy of psychiatric disorders: evidence for a key-lock principle. Clin EEG Neurosci 36:108–115

    PubMed  Google Scholar 

  40. Saletu B, Anderer P, Paulus E, Grunberger J, Wicke L, Neuhold A, Fischhof PK, Litschauer G (1991) EEG brain mapping in diagnostic and therapeutic assessment of dementia. Alzheimer Dis Assoc Disord 5(Suppl 1):S57–S75

    Article  PubMed  Google Scholar 

  41. Schreiter-Gasser U, Gasser T, Ziegler P (1994) Quantitative EEG analysis in early onset Alzheimer’s disease: correlations with severity, clinical characteristics, visual EEG and CCT. Electroencephalogr Clin Neurophysiol 90:267–272

    Article  PubMed  CAS  Google Scholar 

  42. Pascual-Marqui RD, Michel CM, Lehmann D (1994) Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol 18:49–65

    Article  PubMed  CAS  Google Scholar 

  43. Pascual-Marqui RD, Lehmann D, Koenig T, Kochi K, Merlo MC, Hell D, Koukkou M (1999) Low resolution brain electromagnetic tomography (LORETA) functional imaging in acute, neuroleptic-naive, first-episode, productive schizophrenia. Psychiatry Res 90:169–179

    Article  PubMed  CAS  Google Scholar 

  44. de Peralta Menendez RG, Andino SL (2000) Discussing the capabilities of Laplacian Minimization. Brain Topogr 13:97–104

    Article  PubMed  Google Scholar 

  45. Kincses WE, Braun C, Kaiser S, Elbert T (1999) Modeling extended sources of event-related potentials using anatomical and physiological constraints. Hum Brain Mapp 8:182–193

    Article  PubMed  CAS  Google Scholar 

  46. Michel CM, Grave de Peralta R, Lantz G, Gonzalez Andino S, Spinelli L, Blanke O, Landis T, Seeck M (1999) Spatiotemporal EEG analysis and distributed source estimation in presurgical epilepsy evaluation. J Clin Neurophysiol 16:239–266

    Article  PubMed  CAS  Google Scholar 

  47. Pascual-Marqui RD, Esslen M, Kochi K, Lehmann D (2002) Functional imaging with low-resolution brain electromagnetic tomography (LORETA): a review. Methods Find Exp Clin Pharmacol 24(Suppl C):91–95

    PubMed  Google Scholar 

  48. Phillips C, Rugg MD, Friston KJ (2002) Anatomically informed basis functions for EEG source localization: combining functional and anatomical constraints. Neuroimage 16:678–695

    Article  PubMed  Google Scholar 

  49. Phillips C, Rugg MD, Fristont KJ (2002) Systematic regularization of linear inverse solutions of the EEG source localization problem. Neuroimage 17:287–301

    Article  PubMed  Google Scholar 

  50. Yao D, He B (2001) A self-coherence enhancement algorithm and its application to enhancing three-dimensional source estimation from EEGs. Ann Biomed Eng 29:1019–1027

    Article  PubMed  CAS  Google Scholar 

  51. de Tommaso M, Difruscolo O, Sciruicchio V, Specchio N, Livrea P (2007) Abnormalities of the contingent negative variation in Huntington’s disease: correlations with clinical features. J Neurol Sci 254:84–89

    Article  PubMed  Google Scholar 

  52. Beste C, Saft C, Andrich J, Gold R, Falkenstein M (2008) Response inhibition in Huntington’s disease-a study using ERPs and sLORETA. Neuropsychologia 46:1290–1297

    Article  PubMed  Google Scholar 

  53. Huntington Study Group (1996) Unified Huntington’s disease rating scale: reliability and consistency. Mov Disord 11:136–142

    Article  Google Scholar 

  54. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    Article  PubMed  CAS  Google Scholar 

  55. Shoulson I, Fahn S (1979) Huntington disease: clinical care and evaluation. Neurology 29:1–3

    PubMed  CAS  Google Scholar 

  56. Anderer P, Semlitsch HV, Saletu B, Barbanoj MJ (1992) Artifact processing in topographic mapping of electroencephalographic activity in neuropsychopharmacology. Psychiatry Res 45:79–93

    Article  PubMed  CAS  Google Scholar 

  57. Anderer P, Saletu B, Kinsperger K, Semlitsch H (1987) Topographic brain mapping of EEG in neuropsychopharmacology–Part I. Methodological aspects. Methods Find Exp Clin Pharmacol 9:371–384

    PubMed  CAS  Google Scholar 

  58. Kubicki S, Herrmann WM, Fichte K, Freund G (1979) Reflections on the topics: EEG frequency bands and regulation of vigilance. Pharmakopsychiatr Neuropsychopharmakol 12:237–245

    PubMed  CAS  Google Scholar 

  59. Ary JP, Klein SA, Fender DH (1981) Location of sources of evoked scalp potentials: corrections for skull and scalp thicknesses. IEEE Trans Biomed Eng 28:447–452

    Article  PubMed  CAS  Google Scholar 

  60. Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, Stuttgart

    Google Scholar 

  61. Towle VL, Bolanos J, Suarez D, Tan K, Grzeszczuk R, Levin DN, Cakmur R, Frank SA, Spire JP (1993) The spatial location of EEG electrodes: locating the best-fitting sphere relative to cortical anatomy. Electroencephalogr Clin Neurophysiol 86:1–6

    Article  PubMed  CAS  Google Scholar 

  62. Holmes AP, Blair RC, Watson JD, Ford I (1996) Nonparametric analysis of statistic images from functional mapping experiments. J Cereb Blood Flow Metab 16:7–22

    Article  PubMed  CAS  Google Scholar 

  63. Friston K (1996) Statistical parametric mapping and other analyses of functional imaging data. In: Tago AW, Maziotta JC (eds) Brain Mapping. Academic Press, San Diego, pp 363–386

    Google Scholar 

  64. Cross EM, Chaffin WW (1982) Use of the binomial theorem in interpreting results of multiple tests of significance. Educ Psychol Measurement 42:25–34

    Article  Google Scholar 

  65. Babiloni C, Binetti G, Cassetta E, Cerboneschi D, Dal Forno G, Del Percio C, Ferreri F, Ferri R, Lanuzza B, Miniussi C, Moretti DV, Nobili F, Pascual-Marqui RD, Rodriguez G, Romani GL, Salinari S, Tecchio F, Vitali P, Zanetti O, Zappasodi F, Rossini PM (2004) Mapping distributed sources of cortical rhythms in mild Alzheimer’s disease. A multicentric EEG study. Neuroimage 22:57–67

    Article  PubMed  Google Scholar 

  66. Hughes SW, Crunelli V (2005) Thalamic mechanisms of EEG alpha rhythms and their pathological implications. Neuroscientist 11:357–372

    Article  PubMed  Google Scholar 

  67. Alper KR, John ER, Brodie J, Gunther W, Daruwala R, Prichep LS (2006) Correlation of PET and qEEG in normal subjects. Psychiatry Res 146:271–282

    Article  PubMed  Google Scholar 

  68. Head H (1923) The conception of nervous and mental energy. II. Vigilance: a physiological state of the nervous system. Br J Psychol 14:125–147

    Google Scholar 

  69. Bente D (1977) Vigilance: psychophysiologic aspects. Verh Dtsch Ges Inn Med 83:945–952

    PubMed  CAS  Google Scholar 

  70. Saletu B, Grunberger J (1985) Memory dysfunction and vigilance: neurophysiological and psychopharmacological aspects. Ann N Y Acad Sci 444:406–427

    Article  PubMed  CAS  Google Scholar 

  71. Anokhin AP, Birbaumer N, Lutzenberger W, Nikolaev A, Vogel F (1996) Age increases brain complexity. Electroencephalogr Clin Neurophysiol 99:63–68

    Article  PubMed  CAS  Google Scholar 

  72. Polich J (1997) EEG and ERP assessment of normal aging. Electroencephalogr Clin Neurophysiol 104:244–256

    Article  PubMed  CAS  Google Scholar 

  73. Holschneider DP, Leuchter AF (1995) Beta activity in aging and dementia. Brain Topogr 8:169–180

    Article  PubMed  CAS  Google Scholar 

  74. Gawel M, Zalewska E, Szmidt-Salkowska E, Kowalski J (2009) The value of quantitative EEG in differential diagnosis of Alzheimer’s disease and subcortical vascular dementia. J Neurol Sci 283:127–133

    Article  PubMed  CAS  Google Scholar 

  75. Saletu B, Anderer P, Paulus E, Grunberger J, Wicke L, Neuhold A, Fischhof PK, Litschauer G (1991) EEG brain mapping in diagnostic and therapeutic assessment of dementia. Alzheimer Dis Assoc Disord 5(Suppl 1):57–75

    Article  Google Scholar 

  76. Muhlau M, Weindl A, Wohlschlager AM, Gaser C, Stadtler M, Valet M, Zimmer C, Kassubek J, Peinemann A (2007) Voxel-based morphometry indicates relative preservation of the limbic prefrontal cortex in early Huntington disease. J Neural Transm 114:367–372

    Article  PubMed  CAS  Google Scholar 

  77. Thiruvady DR, Georgiou-Karistianis N, Egan GF, Ray S, Sritharan A, Farrow M, Churchyard A, Chua P, Bradshaw JL, Brawn TL, Cunnington R (2007) Functional connectivity of the prefrontal cortex in Huntington’s disease. J Neurol Neurosurg Psychiatry 78:127–133

    Article  PubMed  CAS  Google Scholar 

  78. Dursun SM, Burke JG, Andrews H, Mlynik-Szmid A, Reveley MA (2000) The effects of antipsychotic medication on saccadic eye movement abnormalities in Huntington’s disease. Prog Neuropsychopharmacol Biol Psychiatry 24:889–896

    Article  PubMed  Google Scholar 

  79. Schmidtke K, Manner H, Kaufmann R, Schmolck H (2002) Cognitive procedural learning in patients with fronto-striatal lesions. Learn Mem 9:419–429

    Article  PubMed  Google Scholar 

  80. Bonelli RM, Cummings JL (2008) Frontal-subcortical dementias. Neurologist 14:100–107

    Article  PubMed  Google Scholar 

  81. Joel D (2001) Open interconnected model of basal ganglia-thalamocortical circuitry and its relevance to the clinical syndrome of Huntington’s disease. Mov Disord 16:407–423

    Article  PubMed  CAS  Google Scholar 

  82. Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    Article  PubMed  CAS  Google Scholar 

  83. Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13:266–271

    Article  PubMed  CAS  Google Scholar 

  84. Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577

    Article  PubMed  CAS  Google Scholar 

  85. Hedreen JC, Folstein SE (1995) Early loss of neostriatal striosome neurons in Huntington’s disease. J Neuropathol Exp Neurol 54:105–120

    Article  PubMed  CAS  Google Scholar 

  86. Alper K, Gunther W, Prichep LS, John ER, Brodie J (1998) Correlation of qEEG with PET in schizophrenia. Neuropsychobiology 38:50–56

    Article  PubMed  CAS  Google Scholar 

  87. Gavazzi C, Nave RD, Petralli R, Rocca MA, Guerrini L, Tessa C, Diciotti S, Filippi M, Piacentini S, Mascalchi M (2007) Combining functional and structural brain magnetic resonance imaging in Huntington disease. J Comput Assist Tomogr 31:574–580

    Article  PubMed  Google Scholar 

  88. Muhlau M, Gaser C, Wohlschlager AM, Weindl A, Stadtler M, Valet M, Zimmer C, Kassubek J, Peinemann A (2007) Striatal gray matter loss in Huntington’s disease is leftward biased. Mov Disord 22:1169–1173

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to express their thanks to Josef Diez, MD, and Franz Reisecker, MD, Department of Neurology, Barmherzige Brüder Hospital of Graz, for their cooperative assistance in this project. Furthermore, we thank Mag. Elisabeth Grätzhofer, Department of Psychiatry, Medical University of Vienna, for her valuable editorial assistance.

Conflict of interest

The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annamaria Painold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Painold, A., Anderer, P., Holl, A.K. et al. EEG low-resolution brain electromagnetic tomography (LORETA) in Huntington’s disease. J Neurol 258, 840–854 (2011). https://doi.org/10.1007/s00415-010-5852-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-010-5852-5

Keywords

Navigation