Skip to main content
Log in

Progression in ALS is not linear but is curvilinear

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

The aim of the study is to determine the shape of the progression curve in ALS, assess the impact of clinical variables on the rate of progression, and evaluate the association between functional decline and survival. Data were prospectively collected and entered into a clinical database from all patients seen in 2002–2008 at the Centre SLA, Hôpital de la Salpêtrière, Paris. Variables analyzed were demographic and baseline information, the ALS functional rating scale (ALSFRS-R), strength testing (MMT), and survival. Generalized additive mixed models characterized changes in ALSFRS-R and MMT scores over time. Linear mixed effects assessed the impact of demographic and clinical measures on rate of progression and Cox models examined their effect on survival. Of 2,452 patients with ALS identified, 1,884 had adequate data for analysis. The ALSFRS-R and MMT declined in a curvilinear way; a quadratic fit described the trends but a linear fit did not. The total ALSFRS-R score was negatively associated with age-of-onset (p < 0.001), and positively associated with baseline ALSFRS-R (p < 0.001) as well as more severe bulbar features (p < 0.001). Higher rate of decline in ALSFRS-R and MMT, older age-at-onset and bulbar-onset predicted shorter survival. Deterioration in ALS is non-linear. The early and late phases of the illness show the most rapid rates of decline. Older age and bulbar signs are associated with a steeper decline, and along with more rapid initial rate of decline, but not current functional status, also predict survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Rowland LP, Shneider NA (2001) Amyotrophic lateral sclerosis. N Engl J Med 344:1688–1700

    Article  CAS  PubMed  Google Scholar 

  2. Meininger V, Binsimon G, Lacomblez L, Salachas F (1995) Natural history of amyotrophic lateral sclerosis: a discussion. Adv Neurol 68:199–207

    CAS  PubMed  Google Scholar 

  3. Guiloff RJ, Goonetilleke A (1995) Natural history of amyotrophic lateral sclerosis: observations with the charing cross amyotrophic lateral sclerosis rating scales. Adv Neurol 68:185–198

    CAS  PubMed  Google Scholar 

  4. Pradas J, Finison L, Andres PL, Thornell B, Hollander D, Munsat TL (1993) The natural history of amyotrophic lateral sclerosis and the use of natural history controls in therapeutic trials. Neurology 43:751–755

    CAS  PubMed  Google Scholar 

  5. Moore DH, Miller RG (2004) Improving efficiency of ALS clinical trials using lead-in designs. Amyotroph Lateral Scler Other Motor Neuron Disord 5:57–60

    Article  PubMed  Google Scholar 

  6. Gordon PH, Moore DH, Miller RG et al (2007) Minocycline is not effective for amyotrophic lateral sclerosis: a phase III randomized controlled trial. Lancet Neurol 6:1045–1053

    Article  CAS  PubMed  Google Scholar 

  7. Miller RG, Moore DH (2004) ALS trial design: expectation and reality. Amyotroph Lateral Scler Other Motor neuron Disord 5:52–54

    Article  PubMed  Google Scholar 

  8. Gordon PH, Corcia P, Lacomblez L et al (2009) Defining survival as an outcome measure in amyotrophic lateral sclerosis. Arch Neurol 66:758–761

    Article  PubMed  Google Scholar 

  9. Cedarbaum JM, Stambler N, Malta E et al (1999) The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS Study Group (Phase II/III). J Neurol Sci 169:13–21

    Article  CAS  PubMed  Google Scholar 

  10. ALS Great Lakes Study Group (2003) A comparison of muscle strength testing techniques in amyotrophic lateral sclerosis. Neurology 61:1503–1507

    Google Scholar 

  11. Brooks BR, Miller RG, Swash M, Munsat TL (2000) World Federation of Neurology Research Group on Motor Neuron Diseases. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:293–299

    Article  CAS  PubMed  Google Scholar 

  12. A double-blind placebo-controlled clinical trial of subcutaneous recombinant human ciliary neurotrophic factor (rHCNTF) in amyotrophic lateral sclerosis (1996) ALS CNTF Treatment Study Group. Neurology 46:1244–1249

    Google Scholar 

  13. Meininger V, Drory VE, Leigh PN, Ludolph A, Robberecht W, Silani V (2009) Glatiramer acetate has no impact on disease progression in ALS at 40 mg/day: a double-blind, randomized, multicentre, placebo-controlled trial. Amyotroph Lateral Scler 1:1–7

    Google Scholar 

  14. Jenkins BG, Kilvenyi P, Kustermann E et al (2000) Nonlinear decrease over time in N-acetyl aspartate levels in the absence of neuronal loss and increases in glutamine and glucose in transgenic Huntington’s disease mice. J Neurochem 74:2108–2119

    Article  CAS  PubMed  Google Scholar 

  15. Rockwood K, Dai D, Mitnitski A (2008) Patterns of decline and evidence of subgroups in patients with Alzheimer’s disease taking galantamine for up to 48 months. Int J Geriatr Psychiatry 23:207–214

    Article  PubMed  Google Scholar 

  16. Kempster PA, Williams DR, Selikhova M, Holton J, Revesz T, Lees AJ (2007) Patterns of levodopa response in Parkinson’s disease: a clinicopathological study. Brain 130:2123–2128

    Article  CAS  PubMed  Google Scholar 

  17. Rosenblatt A, Liang KY, Zhou H et al (2006) The association of CAG repeat length with clinical progression in Huntington disease. Neurology 66:1016–1020

    Article  CAS  PubMed  Google Scholar 

  18. Martins CA, Oulhaj A, de Jager CA, Williams JH (2005) ApoE alleles predict the rate of cognitive decline in Alzheimer disease: a nonlinear model. Neurology 65:1888–1893

    Article  CAS  PubMed  Google Scholar 

  19. Bracco L, Piccini C, Baccini M et al (2007) Pattern and progression of cognitive decline in Alzheimer’s disease: role of premorbid intelligence and ApoE genotype. Dement Geriatr Cogn Disord 24:483–491

    Article  CAS  PubMed  Google Scholar 

  20. Kaufman Y, Anaki D, Binns M, Freedman M (2007) Cognitive decline in Alzheimer disease: impact of spirituality, religiosity, and QOL. Neurology 68:1509–1514

    Article  PubMed  Google Scholar 

  21. Small BJ, Backman L (2007) Longitudinal trajectories of cognitive change in preclinical Alzheimer’s disease: a growth mixture modeling analysis. Cortex 43:826–834

    Article  PubMed  Google Scholar 

  22. Mitnitski AB, Graham JE, Mogilner AJ, Rockwood K (1999) The rate of decline in function in Alzheimer’s disease and other dementias. J Gerontol A Biol Sci Med Sci 54:M65–M69

    CAS  PubMed  Google Scholar 

  23. Armon C, Graves MC, Moses D et al (2000) Linear estimates of disease progression predict survival in patients with amyotrophic lateral sclerosis. Muscle Nerve 23:874–882

    Article  CAS  PubMed  Google Scholar 

  24. Milliken JK, Edland SD (2000) Mixed effect models of longitudinal Alzheimer’s disease data: a cautionary note. Stat Med 19:1617–1629

    Article  CAS  PubMed  Google Scholar 

  25. Guimaraes P, Kieburtz K, Goetz CG et al (2005) Non-linearity of Parkinson’s disease progression: implication for sample size calculations in clinical trials. Clin Trials 2:509–518

    Article  PubMed  Google Scholar 

  26. Kimura F, Fujimura C, Ishida S, Nakajima H, Furutama D, Uehara H, Shinoda K, Sugino M, Hanafusa T (2006) Progression rate of ALSFRS-R at time of diagnosis predicts survival time in ALS. Neurology 66:265–267

    Article  CAS  PubMed  Google Scholar 

  27. Gordon PH, Cheung YK (2006) Progression rate of ALSFRS-R at time of diagnosis predicts survival time in ALS. Neurology 67:1314–1315

    Article  PubMed  Google Scholar 

Download references

Conflict of interest statement

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul H. Gordon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordon, P.H., Cheng, B., Salachas, F. et al. Progression in ALS is not linear but is curvilinear. J Neurol 257, 1713–1717 (2010). https://doi.org/10.1007/s00415-010-5609-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-010-5609-1

Keywords

Navigation