Skip to main content
Log in

The place of conventional MRI and newly emerging MRI techniques in monitoring different aspects of treatment outcome

  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Magnetic resonance imaging (MRI) is the most important paraclinical measure for assessing and monitoring the pathologic changes implicated in the onset and progression of multiple sclerosis (MS). Conventional MRI sequences, such as T1-weighted gadolinium (Gd) enhanced and spin-echo T2-weighted imaging, only provide an incomplete picture of the degree of inflammation and underlying neurodegenerative changes in this disease. Two- and three-dimensional fluid-attenuated inversion recovery and double inversion recovery sequences allow better identification of cortical, periventricular and infratentorial lesions. Ultra-high field strength MRI has the potential to detect subpial cortical and deep gray matter lesions. Unenhanced T1-weighted imaging can reveal hypointense black holes, a measure of chronic neurodegeneration. Magnetization transfer imaging (MTI) is increasingly used to characterize the evolution of MS lesions and normal-appearing brain tissue. Evidence suggests that the dynamics of magnetization transfer changes correlate with the extent of demyelination and remyelination. Magnetic resonance spectroscopy, which provides details on tissue biochemistry, metabolism, and function, also has the capacity to reveal neuroprotective mechanisms. By measuring the motion of water, diffusion imaging can provide information about the orientation, size, and geometry of tissue damage in white and gray matter. These advanced non-conventional MRI techniques relate better to clinical impairment, disease progression, accumulation of disability, and have the potential to detect neuroprotective effects of treatment. Although detecting the status of neuronal integrity using MRI techniques continues to improve, a “gold standard” model remains to be established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson VM, Fox NC, Miller DH (2006) Magnetic resonance imaging measures of brain atrophy in multiple sclerosis. J Magn Reson Imaging 23:605–618

    Article  PubMed  Google Scholar 

  2. Arnold DL, Matthews PM, Francis GS, O'Connor J, Antel JP (1992) Proton magnetic resonance spectroscopic imaging for metabolic characterization of demyelinating plaques. Ann Neurol 31:235–241

    Article  PubMed  CAS  Google Scholar 

  3. Barkhof F, Bruck W, De Groot CJ, Bergers E, Hulshof S, Geurts J, Polman CH, van der Valk P (2003) Remyelinated lesions in multiple sclerosis: magnetic resonance image appearance. Arch Neurol 60:1073–1081

    Article  PubMed  Google Scholar 

  4. Barkhof F, Filippi M, Miller DH, Scheltens P, Campi A, Polman CH, Comi G, Ader HJ, Losseff N, Valk J (1997) Comparison of MRI criteria at first presentation to predict conversion to clinically definite multiple sclerosis. Brain 120(Pt 11):2059–2069

    Article  PubMed  Google Scholar 

  5. Barkhof F, Karas GB, van Walderveen MA (2000) T1 hypointensities and axonal loss. Neuroimaging Clinics of North America 10:739–752, ix

    PubMed  CAS  Google Scholar 

  6. Bedell BJ, Narayana PA (1998) Implementation and evaluation of a new pulse sequence for rapid acquisition of double inversion recovery images for simultaneous suppression of white matter and CSF. J Magn Reson Imaging 8:544–547

    Article  PubMed  CAS  Google Scholar 

  7. Bermel RA, Bakshi R (2006) The measurement and clinical relevance of brain atrophy in multiple sclerosis. Lancet Neurol 5:158–170

    Article  PubMed  Google Scholar 

  8. Bink A, Schmitt M, Gaa J, Mugler JP 3rd, Lanfermann H, Zanella FE (2006) Detection of lesions in multiple sclerosis by 2D FLAIR and single-slab 3D FLAIR sequences at 3.0 T: initial results. Eur Radiol 16:1104–1110

    Article  PubMed  Google Scholar 

  9. Bo L, Geurts JJ, van der Valk P, Polman C, Barkhof F (2007) Lack of correlation between cortical demyelination and white matter pathologic changes in multiple sclerosis. Arch Neurol 64:76–80

    Article  PubMed  Google Scholar 

  10. Cadavid C, Lincoln J, Baguero A, Segal L, Gomez-Choco M, Alamani J, Peng B, Tullock K, Joseph G, Szczepanowski K, Skurnick J, Halper J, Vidgop Y, Baladandapani P, Cook S, Wolansky L (2006) Outcome of T1 hypointensities in patients with early forms of multiple sclerosis randomized to Betaseron or Copaxone and followed by monthly 3T MRI for up to 2 years: preliminary analysis of the BECOME study. Mult Scler 12(Suppl 1):S97

    Google Scholar 

  11. Chen JT, Collins DL, Atkins HL, Freedman MS, Galal A, Arnold DL (2006) Brain atrophy after immunoablation and stem cell transplantation in multiple sclerosis. Neurology 66:1935–1937

    Article  PubMed  CAS  Google Scholar 

  12. Chen JT, Collins DL, Freedman MS, Atkins HL, Arnold DL (2005) Local magnetization transfer ratio signal inhomogeneity is related to subsequent change in MTR in lesions and normal-appearing white matter of multiple sclerosis patients. NeuroImage 25:1272–1278

    Article  PubMed  CAS  Google Scholar 

  13. Chen JT, Kuhlmann T, Jansen GH, Collins DL, Atkins HL, Freedman MS, O’Connor PW, Arnold DL (2007) Voxel-based analysis of the evolution of magnetization transfer ratio to quantify remyelination and demyelination with histopathological validation in a multiple sclerosis lesion. NeuroImage 36:1152–1158

    Article  PubMed  CAS  Google Scholar 

  14. Comi G, Filippi M, Wolinsky JS (2001) European/Canadian multicenter, double-blind, randomized, placebo-controlled study of the effects of glatiramer acetate on magnetic resonance imaging – measured disease activity and burden in patients with relapsing multiple sclerosis. European/Canadian Glatiramer Acetate Study Group. Ann Neurol 49:290–297

    Article  PubMed  CAS  Google Scholar 

  15. Cotton F, Weiner HL, Jolesz FA, Guttmann CR (2003) MRI contrast uptake in new lesions in relapsing-remitting MS followed at weekly intervals. Neurology 60:640–646

    Article  PubMed  Google Scholar 

  16. Dalton CM, Chard DT, Davies GR, Miszkiel KA, Altmann DR, Fernando K, Plant GT, Thompson AJ, Miller DH (2004) Early development of multiple sclerosis is associated with progressive grey matter atrophy in patients presenting with clinically isolated syndromes. Brain 127:1101–1107

    Article  PubMed  Google Scholar 

  17. Deloire-Grassin MS, Brochet B, Quesson B, Delalande C, Dousset V, Canioni P, Petry KG (2000) In vivo evaluation of remyelination in rat brain by magnetization transfer imaging. J Neurol Sci 178:10–16

    Article  PubMed  CAS  Google Scholar 

  18. Dwyer M, Dolezal O, Hussein S, Horakova D, Havrdova E, Cox J, Zivadinov R (2007) Development of central atrophy may lead to underestimation of lesion accrual in patients with multiple sclerosis. ISMRM

  19. Erskine MK, Cook LL, Riddle KE, Mitchell JR, Karlik SJ (2005) Resolution-dependent estimates of multiple sclerosis lesion loads. The Can J Neurol Sci 32:205–212

    CAS  Google Scholar 

  20. Filippi M (2000) Enhanced magnetic resonance imaging in multiple sclerosis. Mult Scler 6:320–326

    PubMed  CAS  Google Scholar 

  21. Filippi M, Rovaris M, Capra R, Gasperini C, Prandini F, Martinelli V, Horsfield MA, Bastianello S, Sormani MP, Pozzilli C, Comi G (1999) Interferon beta treatment for multiple sclerosis has a graduated effect on MRI enhancing lesions according to their size and pathology. J Neurol Neurosurg Psychiatry 67:386–389

    PubMed  CAS  Google Scholar 

  22. Filippi M, Rovaris M, Capra R, Gasperini C, Yousry TA, Sormani MP, Prandini F, Horsfield MA, Martinelli V, Bastianello S, Kuhne I, Pozzilli C, Comi G (1998) A multi-centre longitudinal study comparing the sensitivity of monthly MRI after standard and triple dose gadolinium-DTPA for monitoring disease activity in multiple sclerosis. Implications for phase II clinical trials. Brain 121(Pt 10):2011–2020

    Article  PubMed  Google Scholar 

  23. Filippi M, Rovaris M, Inglese M, Barkhof F, De Stefano N, Smith S, Comi G (2004) Interferon beta-1a for brain tissue loss in patients at presentation with syndromes suggestive of multiple sclerosis: a randomised, double-blind, placebo-controlled trial. Lancet 364:1489–1496

    Article  PubMed  CAS  Google Scholar 

  24. Filippi M, Yousry T, Rocca MA, Fesl G, Voltz R, Comi G (1997) Sensitivity of delayed gadolinium-enhanced MRI in multiple sclerosis. Acta Neurol Scand 95:331–334

    PubMed  CAS  Google Scholar 

  25. Ge Y, Grossman RI, Udupa JK, Fulton J, Constantinescu CS, Gonzales-Scarano F, Babb JS, Mannon LJ, Kolson DL, Cohen JA (2000) Glatiramer acetate (Copaxone) treatment in relapsing-remitting MS: quantitative MR assessment. Neurology 54:813–817

    PubMed  CAS  Google Scholar 

  26. Geurts JJ, Pouwels PJ, Uitdehaag BM, Polman CH, Barkhof F, Castelijns JA (2005) Intracortical lesions in multiple sclerosis: improved detection with 3D double inversion-recovery MR imaging. Radiology 236:254–260

    Article  PubMed  Google Scholar 

  27. Hardmeier M, Wagenpfeil S, Freitag P, Fisher E, Rudick RA, Kooijmans M, Clanet M, Radue EW, Kappos L (2005) Rate of brain atrophy in relapsing MS decreases during treatment with IFNbeta-1a. Neurology 64:236–240

    PubMed  CAS  Google Scholar 

  28. Horakova D, Cox JL, Havrdova E, Hussein S, Dolezal O, Cookfair D, Dwyer MG, Seidl Z, Bergsland N, Vaneckova M, Zivadinov R (2007) Evolution of different MRI measures in patients with active relapsing-remitting multiple sclerosis over 2 and 5 years. A case control study. J Neurol Neurosurg Psychiatry

  29. Inglese M (2006) Multiple sclerosis: new insights and trends. AJNR 27:954–957

    PubMed  CAS  Google Scholar 

  30. Inglese M, Mancardi GL, Pagani E, Rocca MA, Murialdo A, Saccardi R, Comi G, Filippi M (2004) Brain tissue loss occurs after suppression of enhancement in patients with multiple sclerosis treated with autologous haematopoietic stem cell transplantation. J Neurol Neurosurg Psychiatry 75:643–644

    PubMed  CAS  Google Scholar 

  31. Jones C, Riddehough A, Li D, Zhao G, Paty D (2001) MRI cerebral atrophy in relapsing-remitting MS: results from the PRISMS trial. Neurology 56(Suppl 3):A379

    Google Scholar 

  32. Kangarlu A, Bourekas EC, Ray-Chaudhury A, Rammohan KW (2007) Cerebral cortical lesions in multiple sclerosis detected by MR imaging at 8 Tesla. AJNR 28:262–266

    PubMed  CAS  Google Scholar 

  33. Kappos L, Moeri D, Radue EW, Schoetzau A, Schweikert K, Barkhof F, Miller D, Guttmann CR, Weiner HL, Gasperini C, Filippi M (1999) Predictive value of gadolinium-enhanced magnetic resonance imaging for relapse rate and changes in disability or impairment in multiple sclerosis: a meta-analysis. Gadolinium MRI Meta-analysis Group. Lancet 353:964–969

    Article  PubMed  CAS  Google Scholar 

  34. Kappos L, Polman CH, Freedman MS, Edan G, Hartung HP, Miller DH, Montalban X, Barkhof F, Bauer L, Jakobs P, Pohl C, Sandbrink R (2006) Treatment with interferon beta-1b delays conversion to clinically definite and McDonald MS in patients with clinically isolated syndromes. Neurology 67:1242–1249

    Article  PubMed  CAS  Google Scholar 

  35. Khan O, Mackenzie M, Shen Y, Zak I, Latif Z, Caon C (2007) Combined Brain MTR and H-MRS Multi-Modality Approach To Investigate Mechanism of Action of Interferon Beta and Glatiramer Acetate in RRMS. Neurology 68:A57

    Article  Google Scholar 

  36. Khan O, Shen Y, Hu J, Ching W, Caon C, Reznar M, Latif Z, Tselis A, Lisak R (2005) Sustained effect of glatiramer acetate on cerebral axonal recovery in relapsing-remitting MS: results after three years of serial brain magnetic resonance spectroscopy examination. J Neurol 252:127–128

    Google Scholar 

  37. Kutzelnigg A, Faber-Rod JC, Bauer J, Lucchinetti CF, Sorensen PS, Laursen H, Stadelmann C, Bruck W, Rauschka H, Schmidbauer M, Lassmann H (2007) Widespread demyelination in the cerebellar cortex in multiple sclerosis. Brain Pathol (Zurich, Switzerland) 17:38–44

    Article  PubMed  Google Scholar 

  38. Kutzelnigg A, Lucchinetti CF, Stadelmann C, Bruck W, Rauschka H, Bergmann M, Schmidbauer M, Parisi JE, Lassmann H (2005) Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128:2705–2712

    Article  PubMed  Google Scholar 

  39. Lincoln J, Belenguer A, Vidgop E, Cadavid D, Wolansky L, Skurnick J, Cook S (2007) Comparison of Betaseron and Copaxone on newly enhancing lesions by monthly 3T MRI with triple dose gadolinium: secondary outcomes in a 15-month analysis of the BECOME study. Neurology 68(Suppl 1):A331

    Google Scholar 

  40. Magliozzi R, Howell O, Vora A, Serafini B, Nicholas R, Puopolo M, Reynolds R, Aloisi F (2007) Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 130:1089–1104

    Article  PubMed  Google Scholar 

  41. Narayanan S, Caramanos Z, Arnold D (2004) The effect of glatiramer acetate treatment on axonal integrity in multiple sclerosis. Mult Scler 10:S256

    Google Scholar 

  42. Narayanan S, De Stefano N, Francis GS, Arnaoutelis R, Caramanos Z, Collins DL, Pelletier D, Arnason BGW, Antel JP, Arnold DL (2001) Axonal metabolic recovery in multiple sclerosis patients treated with interferon beta-1b. J Neurol 248:979–986

    Article  PubMed  CAS  Google Scholar 

  43. Parry A, Corkill R, Blamire AM, Palace J, Narayanan S, Arnold D, Styles P, Matthews PM (2003) Beta-Interferon treatment does not always slow the progression of axonal injury in multiple sclerosis. J Neurol 250:171–178

    Article  PubMed  CAS  Google Scholar 

  44. Pascual-Lozano A, Martinez-Bisbal M, Bosca I, Valero C, Coret F, Martinez-Granados B, Marti-Bonmati L, Celda B, Casanova B (2006) Axonal damage and inflammation in early multiple sclerosis: effects of subcutaneous interferon-beta-1a treatment. Mult Scler 12(Suppl 1):S186

    Google Scholar 

  45. Patrikios P, Stadelmann C, Kutzelnigg A, Rauschka H, Schmidbauer M, Laursen H, Sorensen PS, Bruck W, Lucchinetti C, Lassmann H (2006) Remyelination is extensive in a subset of multiple sclerosis patients. Brain 129:3165–3172

    Article  PubMed  Google Scholar 

  46. Rademacher J, Engelbrecht V, Burgel U, Freund H, Zilles K (1999) Measuring in vivo myelination of human white matter fiber tracts with magnetization transfer MR. NeuroImage 9:393–406

    Article  PubMed  CAS  Google Scholar 

  47. Ramasamy D, Fritz D, Cox J, Abdelrahman N, Hussein S, Dwyer M, Zivadinov R (2007) Extent of deep grey matter atrophy in patients with multiple sclerosis. A case control study. Mult Scler 13(Suppl 2):P601; S180

    Google Scholar 

  48. Rocca MA, Filippi M (2007) Functional MRI in multiple sclerosis. J Neuroimaging 17(Suppl 1):36S–41S

    Article  PubMed  Google Scholar 

  49. Roccatagliata L, Rocca MA, Valsasina P, Bonzano L, Sormani MP, Saccardi R, Mancardi GL, Filippi M (2007) The long-term effect of AHSCT on MRI measures of MS evolution: a five-year follow-up study. Mult Scler 13:1068–1070

    Article  PubMed  CAS  Google Scholar 

  50. Rovaris M, Codella M, Moiola L, Ghezzi A, Zaffaroni M, Mancardi G, Capello E, Sardanelli F, Comi G, Filippi M (2002) Effect of glatiramer acetate on MS lesions enhancing at different gadolinium doses. Neurology 59:1429–1432

    PubMed  CAS  Google Scholar 

  51. Rovira A, Alonso J, Cucurella G, Nos C, Tintore M, Pedraza S, Rio J, Montalban X (1999) Evolution of multiple sclerosis lesions on serial contrast-enhanced T1-weighted and magnetization-transfer MR images. AJNR 20:1939–1945

    PubMed  CAS  Google Scholar 

  52. Rudick RA, Fisher E, Lee JC, Simon J, Jacobs L (1999) Use of the brain parenchymal fraction to measure whole brain atrophy in relapsing-remitting MS. Multiple Sclerosis Collaborative Research Group. Neurology 53:1698–1704

    PubMed  CAS  Google Scholar 

  53. Sarchielli P, Presciutti O, Tarducci R, Gobbi G, Alberti A, Pelliccioli GP, Orlacchio A, Gallai V (1998) 1H-MRS in patients with multiple sclerosis undergoing treatment with interferon beta-1a: results of a preliminary study. J Neurol Neurosurg Psychiatry 64:204–212

    Article  PubMed  CAS  Google Scholar 

  54. Sicotte NL, Voskuhl RR, Bouvier S, Klutch R, Cohen MS, Mazziotta JC (2003) Comparison of multiple sclerosis lesions at 1.5 and 3.0 Tesla. Invest Radiol 38:423–427

    Article  PubMed  Google Scholar 

  55. Silver NC, Good CD, Barker GJ, MacManus DG, Thompson AJ, Moseley IF, McDonald WI, Miller DH (1997) Sensitivity of contrast enhanced MRI in multiple sclerosis. Effects of gadolinium dose, magnetization transfer contrast and delayed imaging. Brain 120(Pt 7):1149–1161

    Article  PubMed  Google Scholar 

  56. Silver NC, Good CD, Sormani MP, MacManus DG, Thompson AJ, Filippi M, Miller DH (2001) A modified protocol to improve the detection of enhancing brain and spinal cord lesions in multiple sclerosis. J Neurol 248:215–224

    Article  PubMed  CAS  Google Scholar 

  57. Simmons ML, Frondoza CG, Coyle JT (1991) Immunocytochemical localization of N-acetyl-aspartate with monoclonal antibodies. Neuroscience 45:37–45

    Article  PubMed  CAS  Google Scholar 

  58. Sormani MP, Rovaris M, Valsasina P, Wolinsky JS, Comi G, Filippi M (2004) Measurement error of two different techniques for brain atrophy assessment in multiple sclerosis. Neurology 62:1432–1434

    PubMed  CAS  Google Scholar 

  59. Stone LA, Frank JA, Albert PS, Bash C, Smith ME, Maloni H, McFarland HF (1995) The effect of interferon-beta on blood-brain barrier disruptions demonstrated by contrast-enhanced magnetic resonance imaging in relapsing-remitting multiple sclerosis. Ann Neurol 37:611–619

    Article  PubMed  CAS  Google Scholar 

  60. van Waesberghe JH, van Walderveen MA, Castelijns JA, Scheltens P, Lycklama a Nijeholt GJ, Polman CH, Barkhof F (1998) Patterns of lesion development in multiple sclerosis: longitudinal observations with T1-weighted spin-echo and magnetization transfer MR. AJNR 19:675–683

    PubMed  CAS  Google Scholar 

  61. Wattjes MP, Harzheim M, Kuhl CK, Gieseke J, Schmidt S, Klotz L, Klockgether T, Schild HH, Lutterbey GG (2006) Does high-field MR imaging have an influence on the classification of patients with clinically isolated syndromes according to current diagnostic MR imaging criteria for multiple sclerosis? AJNR 27:1794–1798

    PubMed  CAS  Google Scholar 

  62. Wattjes MP, Lutterbey GG, Gieseke J, Traber F, Klotz L, Schmidt S, Schild HH (2007) Double inversion recovery brain imaging at 3T: diagnostic value in the detection of multiple sclerosis lesions. AJNR 28:54–59

    PubMed  CAS  Google Scholar 

  63. Werring DJ, Clark CA, Barker GJ, Thompson AJ, Miller DH (1999) Diffusion tensor imaging of lesions and normal-appearing white matter in multiple sclerosis. Neurology 52:1626–1632

    PubMed  CAS  Google Scholar 

  64. Wolansky L, Cook S, Skurnick J, Lincoln J, Tulloch K, Franco P, Haghighi M, Peng B, Lebovitz Y, Petscavage J, Szczepanowski K, Cadavid D (2007) Betaseron vs. Copaxone in MS with triple-dose gadolinium and 3-T MRI endpoints (BECOME): announcement of final primary study outcome. Mult Scler 13(Suppl 2):S58

    Article  Google Scholar 

  65. Wolansky L, Cook S, Skurnick J, Tullock K, Joseph G, Sheynzon V, Bhaghat N, Haghighi M, Halper J, Cadavid C (2006) Betaseron vs Copaxone in multiple sclerosis with triple dose gadolinium and 3-T MRI endpoints (BECOME): efficacy of the optimized MRI protocol and announcement of primary study outcome. Mult Scler 12(Suppl 1):S98

    Google Scholar 

  66. Wolinsky J (2005) MRI as a surrogate. Mult Scler 11:S1–S82

    Google Scholar 

  67. Zivadinov R (2007) Can imaging techniques measure neuroprotection and remyelination in multiple sclerosis? Neurology 68:S72–S82; discussion S91–S76

    Article  PubMed  Google Scholar 

  68. Zivadinov R (2007) Role of MRI in imaging of myelin. Mult Scler 13(Suppl 2):S13

    Google Scholar 

  69. Zivadinov R, Bakshi R (2004) Central nervous system atrophy and clinical status in multiple sclerosis. J Neuroimaging 14:27S–35S

    Article  PubMed  Google Scholar 

  70. Zivadinov R, Bakshi R (2004) Role of MRI in multiple sclerosis I: inflammation and lesions. Front Biosci 9:665–683

    Article  PubMed  Google Scholar 

  71. Zivadinov R, Fritz D, Hani N, Nussenbaum F, Weinstock-Guttman B, Durfee J, Abdelrahman N, Hussein N, De Brujin M, Cox J, Dwyer M (2007) Voxel-wise dynamic classification of new, stable, resolving and atrophied T2 hyperintense lesion volumes in patients with multiple sclerosis. A 2-year longitudinal study. Mult Scler (in press)

  72. Zivadinov R, Hussein S, Abdelrahman N, Cookfair D, Meyer M, Garg N, Cox J, Dwyer M, Weinstock-Guttman B (2006) Effect of glatiramer acetate on diffusion imaging in patients with multiple sclerosis. Mult Scler (Houndmills, Basingstoke, England) 12(Suppl 1):S99

    Google Scholar 

  73. Zivadinov R, Leist TP (2005) Clinical-magnetic resonance imaging correlations in multiple sclerosis. J Neuroimaging 15:10S–21S

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Zivadinov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zivadinov, R., Stosic, M., Cox, J.L. et al. The place of conventional MRI and newly emerging MRI techniques in monitoring different aspects of treatment outcome. J Neurol 255 (Suppl 1), 61–74 (2008). https://doi.org/10.1007/s00415-008-1009-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-008-1009-1

Key words

Navigation