Skip to main content

Advertisement

Log in

Metabolic correlates of executive dysfunction

Different patterns in mild and very mild Alzheimer's disease

  • ORIGINAL COMMUNICATION
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

This study was designed to examine the correlations between resting-state brain glucose metabolism (CMRglc), as measured with Positron Emission Tomography and performance on executive function tasks in Alzheimer's disease (AD), while taking into account the severity of cognitive deterioration. We addressed this issue in 50 AD patients, classified as very mild (n = 22) and mild (n = 28) AD on the basis of an extensive neuropsychological battery. Thirteen healthy subjects were selected as controls for the neuropsychological measures. Statistical Parametric Mapping (SPM) was used to examine voxel-wise correlations between CMRglc and scores on selected cognitive tests of executive functions: the Stroop Test, the Trail Making Test, the Dual Task and the Phonemic Fluency, while correcting for age and global CMRglc. All analyses were done separately for the two AD subgroups. The very mild AD patients showed significant associations between Stroop and Trail Making Test scores and prefrontal regions metabolism, whereas the mild AD patients exhibited more widely distributed cognitive–metabolic correlations extending to the posterior brain regions. These data suggest that a large cortical network is implicated in executive dysfunction in AD, and that the pattern of cognitive–metabolic correlations varies according to disease severity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrahams S, Goldstein LH, Simmons A, Brammer MJ, Williams SC, Giampietro VP, Andrew CM, Leigh PN (2003) Functional magnetic resonance imaging of verbal fluency and confrontation naming using compressed image acquisition to permit overt responses. Hum Brain Mapp 20:29–0

    Article  PubMed  Google Scholar 

  2. Adcock RA, Constable RT, Gore JC, Goldman-Rakic PS (2000) Functional neuroanatomy of executive processes involved in dual-task performance. Proc Natl Acad Sci USA 97:3567–572

    Article  PubMed  CAS  Google Scholar 

  3. Baddeley AD (1986) Working memory. Oxford University Press, Oxford

  4. Baddeley AD (1990) Human memory: theory and practice. Erlbaum, Hove

    Google Scholar 

  5. Baddeley AD (1996) Exploring the central executive. Q J Exp Psychol 49A:5–8

    Article  Google Scholar 

  6. Baddeley AD, Hitch GJ (1974) Working memory. In: Bower G (ed) Recent advances in learning and motivation. Academic Press, London, pp 47–0

  7. Baddeley AD, Wilson B (1988) Frontal amnesia and the dysexecutive syndrome. Brain Cogn 7:212–13

    Article  PubMed  CAS  Google Scholar 

  8. Baddeley AD, Baddeley HA, Bucks RS, Wilcock GK (2001) Attentional control in Alzheimer's disease. Brain 124:1492–508

    Article  PubMed  CAS  Google Scholar 

  9. Baddeley A, Della Sala S, Papagno C, Spinnler H (1997) Dual-task performance in dysexecutive and nondysexecutive patients with a frontal lesion. Neuropsychology 11:87–94

    Article  Google Scholar 

  10. Baron JC, Chetelat G, Desgranges B, Perchey G, Landeau B, de la Sayette V, Eustache F (2001) In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer's disease. Neuroimage 14:298–09

    Article  PubMed  CAS  Google Scholar 

  11. Baudic S, Dalla Barba G, Thibaudet MC, Smagghe A, Remy P, Traykov L (2006) Executive function deficits in Alzheimer's disease and their relation with episodic memory. Arch Clin Neuoropsychol 21:15–1

    Article  Google Scholar 

  12. Bench CJ, Frith CD, Grasby PM, Friston KJ, Paulesu E, Frackowiak RS, Dolan RJ (1993) Investigations of the functional anatomy of attention using the Stroop test. Neuropsychologia 31:907–22

    Article  PubMed  CAS  Google Scholar 

  13. Bokde AL, Pietrini P, Ibanez V, Furey ML, Alexander GE, Graff-Radford NR, Rapoport SI, Schapiro MB, Horwitz B (2001) The effect of brain atrophy on cerebral hypometabolism in the visual variant of Alzheimer disease. Arch Neurol 58:480–86

    Article  PubMed  CAS  Google Scholar 

  14. Botvinick M, Nystrom LE, Fissell K, Carter CS, Cohen JD (1999) Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature 402:179–81

    Article  PubMed  CAS  Google Scholar 

  15. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl) 82:239–59

    Article  CAS  Google Scholar 

  16. Braak H, Braak E (1995) Staging of Alzheimer's disease-related neurofibrillary changes. Neurobiol Aging 16:271–84

    Article  PubMed  CAS  Google Scholar 

  17. Bracco L, Amaducci L (1992) Italian multicenter study on dementia: a protocol for data collection and clinical diagnosis of Alzheimer's disease The SMID Group. Neuroepidemiology 11:39–5

    Article  PubMed  CAS  Google Scholar 

  18. Bracco L, Tiezzi A, Lippi A, Amaducci L (1986) Staging of mental impairment by means of discriminant analysis. Int J Geriatr Psychiatr 1:99–06

    Article  Google Scholar 

  19. Bracco L, Amaducci L, Pedone D, Bino G, Lazzaro MP, Carella F, D'Antona R, Gallato R, Denes G (1990) Italian Multicentre Study on Dementia (SMID): a neuropsychological test battery for assessing Alzheimer's disease. J Psych Res 24:213–26

    Article  CAS  Google Scholar 

  20. Bunge SA, Klingberg T, Jacobsen RB, Gabrieli JD (2000) A resource model of the neural basis of executive working memory. Proc Natl Acad Sci USA 97:3573–578

    Article  PubMed  CAS  Google Scholar 

  21. Bush G, Whalen PJ, Rosen BR, Jenike MA, McInerney SC, Rauch SL (1998) The counting Stroop: an interference task specialized for functional neuroimaging–validation study with functional MRI. Hum Brain Mapp 6:270–82

    Article  PubMed  CAS  Google Scholar 

  22. Cabeza R, Nyberg L (2000) Imaging cognition II: an empirical review of 275PET and fMRI studies. J Cogn Neurosci 12:1–7

    Article  PubMed  CAS  Google Scholar 

  23. Chang LT (1978) A method for attenuation correction in radionuclide computed tomography. IEEE Trans Nucl Sci 25:638–43

    Article  Google Scholar 

  24. Collette F, Van der Linden M (2002) Brain imaging of the central executive component of working memory. Neurosci Biobehav Rev 26:105–25

    Article  PubMed  Google Scholar 

  25. Collette F, Salmon E, Van der Linden M, Degueldre C, Franck G (1997) Functional anatomy of verbal and visuospatial span tasks in Alzheimer's disease. Hum Brain Mapp 5:110–18

    Article  PubMed  CAS  Google Scholar 

  26. Collette F, Van der Linden M, Salmon E (1999) Executive dysfunction in Alzheimer's disease. Cortex 35:57–2

    Article  PubMed  CAS  Google Scholar 

  27. Collette F, Van der Linden M, Delrue G, Salmon E (2002) Frontal hypometabolism does not explain inhibitory dysfunction in Alzheimer disease. Alzheimer Dis Assoc Disord 16:228–38

    Article  PubMed  CAS  Google Scholar 

  28. Collette F, Hogge M, Salmon E, Van Der Linden M (2006) Exploration of the neural substrates of executive functioning by functional neuroimaging. Neuroscience 139:209–21

    Article  PubMed  CAS  Google Scholar 

  29. Coull JT, Nobre AC (1998) Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. J Neurosci 18:7426–435

    PubMed  CAS  Google Scholar 

  30. Delacourte A, David JP, Sergeant N, Buee L, Wattez A, Vermersch P, Ghozali F, Fallet-Bianco C, Pasquier F, Lebert F, Petit H, Di Menza C (1999) The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer's disease. Neurology 52:1158–165

    PubMed  CAS  Google Scholar 

  31. Desgranges B, Baron JC, de la Sayette V, Petit-Taboue MC, Benali K, Landeau B, Lechevalier B, Eustache F (1998) The neural substrates of memory systems impairment in Alzheimer's disease A PET study of resting brain glucose utilization. Brain 121:611–31

    Article  PubMed  Google Scholar 

  32. Desgranges B, Baron JC, Giffard B, Chetelat G, Lalevee C, Viader F, de la Sayette V, Eustache F (2002) The neural basis of intrusions in free recall and cued recall: a PET study in Alzheimer's disease. Neuroimage 17:1658–664

    Article  PubMed  Google Scholar 

  33. Desgranges B, Baron JC, Lalevee C, Giffard B, Viader F, de La Sayette V, Eustache F (2002) The neural substrates of episodic memory impairment in Alzheimer's disease as revealed by FDG-PET: relationship to degree of deterioration. Brain 125:1116–124

    Article  PubMed  Google Scholar 

  34. D'Esposito M, Detre JA, Alsop DC, Shin RK, Atlas S, Grossman M (1995) The neural basis of the central executive system of working memory. Nature 378:279–81

    Article  PubMed  Google Scholar 

  35. Duncan J, Owen AM (2000) Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci 23:475–83

    Article  PubMed  CAS  Google Scholar 

  36. Eustache F, Piolino P, Giffard B, Viader F, De La Sayette V, Baron JC, Desgranges B (2004) ‘In the course of time– a PET study of the cerebral substrates of autobiographical amnesia in Alzheimer's disease. Brain 127:1549–560

    Article  PubMed  Google Scholar 

  37. Fabrigoule C, Rouch I, Taberly A, Letenneur L, Commenges D, Mazaux JM, Orgogozo JM, Dartigues JF (1998) Cognitive process in preclinical phase of dementia. Brain 121:135–41

    Article  PubMed  Google Scholar 

  38. Fassbender C, Murphy K, Foxe JJ, Wylie GR, Javitt DC, Robertson IH, Garavan H (2004) A topography of executive functions and their interactions revealed by functional magnetic resonance imaging. Brain Res Cogn Brain Res 20:132–43

    Article  PubMed  CAS  Google Scholar 

  39. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state–A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–98

    Article  PubMed  CAS  Google Scholar 

  40. Frackowiak RS, Friston KJ, Frith CD, Dolan RJ, Mazziotta JC (1997) Characterising brain images with the general linear model. In: Frackowiak RS, Friston KJ, Frith CD, Dolan RJ, Mazziotta JC (ed) Human brain function. Academic Press, San Diego, CA, pp 74–5

  41. Friston KJ, Frith CD, Liddle PF, Frackowiak RS (1991) Comparing functional (PET) images: the assessment of significant change. J Cereb Blood Flow Metab 11:690–99

    PubMed  CAS  Google Scholar 

  42. Friston KJ, Holmes AP, Poline JB, Grasby PJ, Williams SC, Frackowiak RS, Turner R (1995) Analysis of fMRI time-series revisited. Neuroimage 2:45–3

    Article  PubMed  CAS  Google Scholar 

  43. Fuster JM (1995) Memory and planning. Two temporal perspectives of frontal lobe function. Adv Neurol 66:9–0

    PubMed  CAS  Google Scholar 

  44. Fuster JM (1999) Synopsis of function and dysfunction of the frontal lobe. Acta Psychiatr Scand Suppl 395:51–7

    Article  PubMed  CAS  Google Scholar 

  45. Fuster JM (2001) The prefrontal cortex –an update: time is of the essence. Neuron 30:319–33

    Article  PubMed  CAS  Google Scholar 

  46. George MS, Ketter TA, Parekh PI, Rosinky N, Ring H, Casey BJ, Trimble MR, Horwitz B, Herscovitch P, Post RM (1994) Regional brain activity when selecting a response despite interference: a H2O15PET study of the Stroop and emotional Stroop. Hum Brain Mapp 1:194–09

    Article  Google Scholar 

  47. Godefroy O, Rousseaux M (1996) Divided and focused attention in patients with lesion of the prefrontal cortex. Brain Cogn 30:155–74

    Article  PubMed  CAS  Google Scholar 

  48. Godefroy O, Cabaret M, Petit-Chenal V, Pruvo JP, Rousseaux M (1999) Control functions of the frontal lobes Modularity of the central-supervisory system? Cortex 35:1–0

    Article  PubMed  CAS  Google Scholar 

  49. Goldman-Rakic PS (1996) The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive. Philos Trans R Soc Lond B Biol Sci 351:1445–453

    Article  PubMed  CAS  Google Scholar 

  50. Grady CL, Furey ML, Pietrini P, Horwitz B, Rapoport SI (2001) Altered brain functional connectivity and impaired short-term memory in Alzheimer's disease. Brain 124:739–56

    Article  PubMed  CAS  Google Scholar 

  51. Grady CL, McIntosh AR, Beig S, Keightley ML, Burian H, Black SE (2003) Evidence from functional neuroimaging of a compensatory prefrontal network in Alzheimer's disease. J Neurosci 23:986–93

    PubMed  CAS  Google Scholar 

  52. Greicius MD, Srivastava G, Reiss AL, Menon V (2004) Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci USA 101:4637–642

    Article  PubMed  CAS  Google Scholar 

  53. Herholz K, Salmon E, Perani D, Baron JC, Holthoff V, Frolich L, Schonknecht P, Ito K, Mielke R, Kalbe E, Zundorf G, Delbeuck X, Pelati O, Anchisi D, Fazio F, Kerrouche N, Desgranges B, Eustache F, Beuthien- Baumann B, Menzel C, Schroder J, Kato T, Arahata Y, Henze M, Heiss WD (2002) Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuroimage 17:302–16

    Article  PubMed  CAS  Google Scholar 

  54. Hirono N, Mori E, Ishii K, Imamura T, Tanimukai S, Kazui H, Hashimoto M, Takatsuki Y, Kitagaki H, Sasaki M (2001) Neuronal substrates for semantic memory: a positron emission tomography study in Alzheimer's disease. Dement Geriatr Cogn Disord 12:15–1

    Article  PubMed  CAS  Google Scholar 

  55. Ibanez V, Pietrini P, Alexander GE, Furey ML, Teichberg D, Rajapakse JC, Rapoport SI, Schapiro MB, Horwitz B (1998) Regional glucose metabolic abnormalities are not the result of atrophy in Alzheimer's disease. Neurology 50:1585–593

    PubMed  CAS  Google Scholar 

  56. Ishii K, Willoch F, Minoshima S, Drzezga A, Ficaro EP, Cross DJ, Kuhl DE, Schwaiger M (2001) Statistical brain mapping of 18F-FDG PET in Alzheimer's disease: validation of anatomic standardization for atrophied brains. J Nucl Med 42:548–57

    PubMed  CAS  Google Scholar 

  57. Kalpouzos G, Eustache F, de la Sayette V, Viader F, Chetelat G, Desgranges B (2005) Working memory and FDG-PET dissociate early and late onset Alzheimer disease patients. J Neurol 252:548–58

    Article  PubMed  CAS  Google Scholar 

  58. Kerns JG, Cohen JD, MacDonald AW 3rd, Cho RY, Stenger VA, Carter CS (2004) Anterior cingulate conflict monitoring and adjustments in control. Science 303:1023–026

    Article  PubMed  CAS  Google Scholar 

  59. Kessler J, Mielke R, Grond M, Herholz K, Heiss WD (2000) Frontal lobe tasks do not reflect frontal lobe function in patients with probable Alzheimer's disease. Int J Neurosci 104:1–5

    Article  PubMed  CAS  Google Scholar 

  60. Kim YH, Gitelman DR, Nobre AC, Parrish TB, LaBar KS, Mesulam MM (1999) The large-scale neural network for spatial attention displays multifunctional overlap but differential asymmetry. Neuroimage 9:269–77

    Article  PubMed  CAS  Google Scholar 

  61. Klingberg T (1998) Concurrent performance of two working memory tasks: potential mechanisms of interference. Cereb Cortex 8:593–01

    Article  PubMed  CAS  Google Scholar 

  62. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, Bergstrom M, Savitcheva I, Huang GF, Estrada S, Ausen B, Debnath ML, Barletta J, Price JC, Sandell J, Lopresti BJ, Wall A, Koivisto P, Antoni G, Mathis CA, Langstrom B (2004) Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann Neurol 55:306–19

    Article  PubMed  CAS  Google Scholar 

  63. Lambon Ralph MA, Patterson K, Graham N, Dawson K, Hodges JR (2003) Homogeneity and heterogeneity in mild cognitive impairment and Alzheimer's disease: a cross-sectional and longitudinal study of 55 cases. Brain 126:2350–362

    Article  PubMed  Google Scholar 

  64. Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L, Kochunov PV, Nickerson D, Mikiten SA, Fox PT (2000) Automated Talairach Atlas labels for functional brain mapping. Hum Brain Mapp 10:120–31

    Article  PubMed  CAS  Google Scholar 

  65. Larrue V, Celsis P, Bes A, Marc- Vergnes JP (1994) The functional anatomy of attention in humans: cerebral blood flow changes induced by reading, naming, and the Stroop effect. J Cereb Blood Flow Metab 14:958–62

    PubMed  CAS  Google Scholar 

  66. Leung HC, Skudlarski P, Gatenby JC, Peterson BS, Gore JC (2000) An eventrelated functional MRI study of the Stroop color word interference task. Cereb Cortex 10:552–60

    Article  PubMed  CAS  Google Scholar 

  67. Lipton AM, McColl R, Cullum CM, Allen G, Ringe WK, Bonte FJ, McDonald E, Rubin CD (2003) Differential activation on fMRI of monozygotic twins discordant for AD. Neurology 60:1713–716

    Article  PubMed  CAS  Google Scholar 

  68. MacDonald AW 3rd, Cohen JD, Stenger VA, Carter CS (2000) Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288:1835–838

    Article  PubMed  CAS  Google Scholar 

  69. Matsumoto K, Tanaka K (2004) Neuroscience conflict and cognitive control. Science 303:969–70

    Article  PubMed  CAS  Google Scholar 

  70. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 34:939–44

    PubMed  CAS  Google Scholar 

  71. Mesulam MM (1990) Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann Neurol 28:597–13

    Article  PubMed  CAS  Google Scholar 

  72. Mesulam MM (1998) From sensation to cognition. Brain 121:1013–052

    Article  PubMed  Google Scholar 

  73. Mesulam MM, Nobre AC, Kim YH, Parrish TB, Gitelman DR (2001) Heterogeneity of cingulate contributions to spatial attention. Neuroimage 13:1065–072

    Article  PubMed  CAS  Google Scholar 

  74. Minoshima S, Koeppe RA, Frey KA, Kuhl DE (1994) Anatomical standardization: linear scaling and non linear warping of functional brain images. J Nucl Med 35:1528–537

    PubMed  CAS  Google Scholar 

  75. Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A, Wager TD (2000) The unity and diversity of executive functions and their contributions to complex “Frontal Lobe–tasks: a latent variable analysis. Cognit Psychol 41:49–00

    Article  PubMed  CAS  Google Scholar 

  76. Morris R, Baddeley AL (1998) Primary and working memory functioning in Alzheimer-type dementia. J Clin Exp Neuropsychol 10:279–96

    Article  Google Scholar 

  77. Muller NG, Machado L, Knight RT (2002) Contributions of subregions of the prefrontal cortex to working memory: evidence from brain lesions in humans. J Cogn Neurosci 14:673–86

    Article  PubMed  Google Scholar 

  78. Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S, Freedman M, Kertesz A, Robert PH, Albert M, Boone K, Miller BL, Cummings J, Benson DF (1998) Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51:1546–554

    PubMed  CAS  Google Scholar 

  79. Nestor PG, Parasuraman R, Haxby JV, Grady CL (1991) Divided attention and metabolic brain dysfunction in mild dementia of the Alzheimer's type. Neuropsychologia 29:379–87

    Article  PubMed  CAS  Google Scholar 

  80. Nestor PJ, Fryer TD, Ikeda M, Hodges JR (2003) Retrosplenial cortex (BA 29/30) hypometabolism in mild cognitive impairment (prodromal Alzheimer's disease). Eur J Neurosci 18:2663–667

    Article  PubMed  CAS  Google Scholar 

  81. Nestor PJ, Fryer TD, Smielewski P, Hodges JR (2003) Limbic hypometabolism in Alzheimer's disease and mild cognitive impairment. Ann Neurol 54:343–51

    Article  PubMed  Google Scholar 

  82. Nobili F, Brugnolo A, Calvini P, Copello F, De Leo C, Girtler N, Morbelli S, Piccardo A, Vitali P, Rodriguez G (2005) Resting SPECT-neuropsychology correlation in very mild Alzheimer's disease. Clin Neurophysiol 116:364–75

    Article  PubMed  CAS  Google Scholar 

  83. Nobre AC, Sebestyen GN, Gitelman DR, Mesulam MM, Frackowiak RS, Frith CD (1997) Functional localization of the system for visuospatial attention using positron emission tomography. Brain 120:515–33

    Article  PubMed  Google Scholar 

  84. Nobre AC, Coull JT, Frith CD, Mesulam MM (1999) Orbitofrontal cortex is activated during breaches of expectation in tasks of visual attention. Nat Neurosci 2:11–2

    Article  PubMed  CAS  Google Scholar 

  85. Nyberg L, Marklund P, Persson J, Cabeza R, Forkstam C, Petersson KM, Ingvar M (2003) Common prefrontal activations during working memory, episodic memory, and semantic memory. Neuropsychologia 41:371–77

    Article  PubMed  Google Scholar 

  86. Parasuraman R, Greenwood PM, Sunderland T (2002) The apolipoprotein E gene, attention, and brain function. Neuropsychology 16:254–74

    Article  PubMed  Google Scholar 

  87. Pardo JV, Pardo PJ, Janer KW, Raichle ME (1990) The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proc Natl Acad Sci USA 87:256–59

    Article  PubMed  CAS  Google Scholar 

  88. Perani D, Bressi S, Cappa SF, Vallar G, Alberoni M, Grassi F, Caltagirone C, Cipolotti L, Franceschi M, Lenzi GL, Fazio F (1993) Evidence of multiple memory systems in the human brain. A [18F]FDG PET metabolic study. Brain 116:903–19

    Article  PubMed  Google Scholar 

  89. Perry RJ, Hodges JR (1999) Attention and executive deficits in Alzheimer's disease. A critical review. Brain 122:383–04

    Article  PubMed  Google Scholar 

  90. Perry RJ, Watson P, Hodges JR (2000) The nature and staging of attention dysfunction in early (minimal and mild) Alzheimer's disease: relationship to episodic and semantic memory impairment. Neuropsychologia 38:252–71

    Article  PubMed  CAS  Google Scholar 

  91. Ranganath C, Johnson MK, D’Esposito M (2003) Prefrontal activity associated with working memory and episodic long-term memory. Neuropsychologia 41:378–89

    Article  PubMed  Google Scholar 

  92. Ravnkilde B, Videbech P, Rosenberg R, Gjedde A, Gade A (2002) Putative tests of frontal lobe function: a PET-study of brain activation during Stroop's Test and verbal fluency. J Clin Exp Neuropsychol 24:534–47

    Article  PubMed  Google Scholar 

  93. Reitan RM (1958) Validity of the trail making test as an indication of organic brain damage. Percept Mot Skills 8:271–76

    Article  Google Scholar 

  94. Remy F, Mirrashed F, Campbell B, Richter W (2005) Verbal episodic memory impairment in Alzheimer's disease: a combined structural and functional MRI study. Neuroimage 25:253–66

    Article  PubMed  Google Scholar 

  95. Rosen VM, Bergeson JL, Putnam K, Harwell A, Sunderland T (2002) Working memory and apolipoprotein E: what's the connection? Neuropsychologia 40:2226–233

    Article  PubMed  CAS  Google Scholar 

  96. Salmon E, Van der Linden M, Collette F, Delfiore G, Maquet P, Degueldre C, Luxen A, Franck G (1996) Regional brain activity during working memory tasks. Brain 119:1617–625

    Article  PubMed  Google Scholar 

  97. Salmon E, Lespagnard S, Marique P, Peeters F, Herholz K, Perani D, Holthoff V, Kalbe E, Anchisi D, Adam S, Collette F, Garraux G (2005) Cerebral metabolic correlates of four dementia scales in Alzheimer's disease. J Neurol 252:283–90

    Article  PubMed  CAS  Google Scholar 

  98. Schlosser R, Hutchinson M, Joseffer S, Rusinek H, Saarimaki A, Stevenson J, Dewey SL, Brodie JD (1998) Functional magnetic resonance imaging of human brain activity in a verbal fluency task. J Neurol Neurosur Psychiatr 64:492–98

    Article  CAS  Google Scholar 

  99. Shallice T (1988) The allocation of processing resources. In: From neuropsychology to mental structure. Cambridge Univ Press, Cambridge

  100. Shallice T, Burgess PW (1991) Deficits in strategy application following frontal lobe damage in man. Brain 114:727–41

    Article  PubMed  Google Scholar 

  101. Slansky I, Herholz K, Pietrzyk U, Kessler J, Grond M, Mielke R, Heiss WD (1995) Cognitive impairment in Alzheimer’s disease correlates with ventricular width and atrophy-corrected cortical glucose metabolism. Neuroradiology 37:270–77

    Article  PubMed  CAS  Google Scholar 

  102. Smith EE, Jonides J (1998) Neuroimaging analyses of human working memory. Proc Natl Acad Sci USA 95:12061–2068

    Article  PubMed  CAS  Google Scholar 

  103. Smith EE, Jonides J (1999) Storage and executive processes in the frontal lobes. Science 283:1657–661

    Article  PubMed  CAS  Google Scholar 

  104. Spinnler H, Tognoni G (1987) Standardizzazione e taratura italiana di test neuropsicologici Italian. J Neurologic Sci 6(suppl 8):5–20

    Google Scholar 

  105. Stanczak DE, Lynch MD, McNeil CK, Brown B (1998) The expanded trail making test: rationale, development, and psychometric properties. Arch Clin Neuropsychol 13:473–87

    PubMed  CAS  Google Scholar 

  106. Stern Y (2002) What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc 8:448–60

    Article  PubMed  Google Scholar 

  107. Stern Y, Moeller JR, Anderson KE, Luber B, Zubin NR, DiMauro AA, Park A, Campbell CE, Marder K, Bell K, Van Heertum R, Sackeim HA (2000) Different brain networks mediate task performance in normal aging and AD: defining compensation. Neurology 55:291–97

    Google Scholar 

  108. Stroop J (1935) Studies of interference in serial verbal reactions. J Exp Psychol 18:643–62

    Article  Google Scholar 

  109. Talairach J, Tournoux P (1988) Coplanar stereotaxic atlas of the human brain: 3-dimensional proportional system—an approach to cerebral imaging. Thieme Medical Publishers, New York, NY

  110. Taylor SF, Kornblum S, Lauber EJ, Minoshima S, Koeppe RA (1997) Isolation of specific interference processing in the Stroop task: PET activation studies. Neuroimage 6:81–2

    Article  PubMed  CAS  Google Scholar 

  111. Thal DR, Rub U, Orantes M, Braak H (2002) Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–800

    PubMed  Google Scholar 

  112. Tulving E, Habib R, Nyberg L, Lepage M, McIntosh AR (1999) Positron emission tomography correlations in and beyond medial temporal lobes. Hippocampus 9:71–2

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Bracco.

Additional information

L. Bracco and V. Bessi contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bracco, L., Bessi, V., Piccini, C. et al. Metabolic correlates of executive dysfunction. J Neurol 254, 1052–1065 (2007). https://doi.org/10.1007/s00415-006-0488-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-006-0488-1

Key words

Navigation