Skip to main content

Advertisement

Log in

Outcome prediction in acute monohemispheric stroke via magnetoencephalography

  • ORIGINAL COMMUNICATION
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Background

Following an ischemic stroke a highly variable clinical outcome is commonly evident despite similar onset symptoms as well as lesion characteristics. The aim of this study was to identify indexes providing early prediction of functional recovery, in addition to clinical severity and lesion dimension at onset of stroke.

Methods

In 32 patients, magnetoencephalographic (MEG) parameters collected in the acute phase (< 10 days from symptoms onset, T0) from affected (AH) and unaffected (UH) hemispheres at rest and evoked by sensory stimuli were evaluated in association with the clinical outcome in a stabilized phase (T1, median 7.8 months) classified with three levels: worsening, partial and full recovery.

Results

Multiple multinomial logistic regression indicated AH gamma and UH delta band powers able to prognosticate clinical outcome at T1. After inclusion in this analysis, lesion volume had the strongest predictive ability, and UH delta band power remained as a predictive factor with a measurable cut-off, maximizing both sensitivity and specificity of the prediction: a patient with UH delta below cut-off would recover to some extent; a patient with UH delta above cut-off would have a probability of about 70% to worsen.

Conclusions

MEG UH delta and AH gamma band powers were found to provide useful information about long-term outcome prognosis. Only the increase of delta band activity in the unaffected hemisphere contains information about the outcome in addition to the lesion volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adams HP Jr, Adams JR, Brott T, del Zoppo GJ, Furlan A, Goldstein LB, et al. (2003) Guidelines for the early management of patients with ischemic stroke. A Scientific Statement from the Stroke Council of the American Stroke Association. Stroke 34:1056 –1083

    Article  PubMed  Google Scholar 

  2. Ahmed I (1988) Predictive value of the electroencephalogram in acute hemispheric lesions. Clin Electroencephalogr 19:205–9

    PubMed  CAS  Google Scholar 

  3. Andrews RJ (1991) Transhemispheric diaschisis. A review and comment. [Review] Stroke 22:943–9

    PubMed  CAS  Google Scholar 

  4. Baird AE, Dambrosia J, Janket S-J, Eichbaum Q, Chaves C, Silver B et al. (2001) A three-item scale for the early prediction of stroke recovery. Lancet 357:2095–99

    Article  PubMed  CAS  Google Scholar 

  5. Barbati G, Porcaro C, Zappasodi F, Rossini PM, Tecchio F (2004) Optimization of an independent component analysis approach for artifact identification and removal in magnetoencephalographic signals. Clin Neurophysiol 115:1220–32

    Article  PubMed  Google Scholar 

  6. Barber PA, Darby DG, Desmond PM, Yang Q, Gerraty RP, Jolley D (1998) Prediction of stroke outcome with echoplanar perfusionand diffusion-weighted MRI. Neurology 51:418–26

    PubMed  CAS  Google Scholar 

  7. Beaulieu C, de Crespigny A, Tong DC, Moseley ME, Albers GW, Marks MP (1999) Longitudinal magnetic resonance imaging study of perfusion and diffusion in stroke: evolution of lesion volume and correlation with clinical outcome. Ann Neurol 46:568–78

    Article  PubMed  CAS  Google Scholar 

  8. Benzel EC, Lewine JD, Bucholz RD, Orrison WW (1993) Magnetic source imaging: a review of the Magnes system of biomagnetic technologies incorporated. Neurosurgery 33:252–9

    Article  PubMed  CAS  Google Scholar 

  9. Bruehl C, Neumann-Haefelin T, Witte OW (2000) Enhancement of whole cell calcium currents following transient MCAO. Brain Res 884:129–38

    Article  PubMed  CAS  Google Scholar 

  10. Buchkremer-Ratzmann I, August M, Hagemann G, Witte OW (1996) Electrophysiological transcortical diaschisis after cortical photothrombosis in rat brain. Stroke 27:1105–11

    PubMed  CAS  Google Scholar 

  11. Butefisch CM, Netz J, Wessling M, Seitz RJ, Homberg V (2003) Remote changes in cortical excitability after stroke. Brain 126:470–81

    Article  PubMed  Google Scholar 

  12. Butz M, Gross J, Timmermann L, Moll M, Freund H-J, Witte OW, et al. (2004) Perilesional pathological oscillatory activity in the magnetoencephalogram of patients with cortical brain lesions. Neurosci Letters 355:93–96

    Article  CAS  Google Scholar 

  13. Calabresi P, Cupini LM, Centonze D, Pisani F, Bernardi G (2003) Antiepileptic drugs as a possible neuroprotective strategy in brain ischemia. Ann Neurol 53:693–702

    Article  PubMed  CAS  Google Scholar 

  14. Calautti C, Leroy F, Guincestre JY, Marie RM, Baron JC (2001) Sequential activation brain mapping after subcortical stroke: changes in hemispheric balance and recovery. Neuroreport 12:3883–6

    Article  PubMed  CAS  Google Scholar 

  15. Carmichael ST, Chesselet MF (2002) Synchronous neuronal activity is a signal for axonal sprouting after cortical lesions in the adult. J Neurosci 22:6062–70

    PubMed  CAS  Google Scholar 

  16. Chu WJ, Mason GF, Pan JW, Hetherington HP, Liu HG, San Pedro EC, et al. (2002) Regional cerebral blood flow and magnetic resonance spectroscopic imaging findings in diaschisis from stroke. Stroke 33:1243–8

    Article  PubMed  Google Scholar 

  17. Cicinelli P, Pasqualetti P, Zaccagnini M, Traversa R, Oliveri M, Rossini PM (2003) Interhemispheric asymmetries of motor cortex excitability in the postacute stroke stage: a paired-pulse transcranial magnetic stimulation study. Stroke 34:2653–8

    Article  PubMed  Google Scholar 

  18. Counsell C, Dennis M (2001) Systematic Review of Prognostic Models in Patients with Acute Stroke. Cerebrovasc Dis 12:159–70

    Article  PubMed  CAS  Google Scholar 

  19. Cuspineda E, Machado C, Aubert E, Galan L, Llopis F, Avila Y (2003) Predicting outcome in acute stroke: a comparison between QEEG and the Canadian Neurological Scale. Clin Electroencephalogr 34:1–4

    PubMed  CAS  Google Scholar 

  20. Dachy B, Biltiau E, Bouillot E, Dan B, Deltenre P (2003) Facilitation of motor evoked potentials in ischemic stroke patients: prognostic value and neurophysiologic correlations. Clin Neurophysiol 114:2370–2375

    Article  PubMed  CAS  Google Scholar 

  21. De Reuck J, Paemeleire K, Van Maele G, Goethals M (2004) The prognostic significance of changes in lesion size of established cerebral infarcts on computed tomography of the brain. Cerebrovasc Dis 17:320–5

    Article  PubMed  Google Scholar 

  22. Del Gratta C, Pizzella V, Tecchio F, Romani G-L (1986) Magnetoencephalography - a non invasive brain imaging method with 1 ms time resolution. Rep Prog Phys 2001 64:1759–1814

    Article  Google Scholar 

  23. Escudero JV, Sancho J, Bautista D, Escudero M, Lopez-Trigo J (1998) Prognostic value of motor evoked potential obtained by transcranial magnetic brain stimulation in motor function recovery in patients with acute ischemic stroke. Stroke 29:1854–1859

    PubMed  CAS  Google Scholar 

  24. Feeney DM, Baron JC. Diaschisis. [Review]. Stroke 17:817–30

  25. Feeney DM (1997) From laboratory to clinic: noradrenergic enhancement of physical therapy for stroke or trauma patients. Adv Neurol 73:383–94

    PubMed  CAS  Google Scholar 

  26. Fierro B, La Bua V, Oliveri M, Daniele O, Brighina F (1999) Prognostic value of somatosensory evoked potentials in stroke. Electromyograph Clin Neurophysiol 39:155–60

    CAS  Google Scholar 

  27. Finnigan SP, Rose SE, Walsh M, Griffin M, Janke AL, McMahon KL, et al. (2004) Correlation of quantitative EEG in acute ischemic stroke with 30-day NIHSS score: comparison with diffusion and perfusion MRI. Stroke 35:899–903

    Article  PubMed  Google Scholar 

  28. Forss N, Hietanen M, Salonen O, Hari R (1999) Modified activation of somatosensory cortical network in patients with right-hemisphere stroke. Brain 122:1889–99

    Article  PubMed  Google Scholar 

  29. Friel KM, Nudo RJ (1998) Recovery of motor functions after focal cortical injury in primates: compensatory movement patterns used during rehabilitative training. Somatosens Mot Res 15:173–89

    Article  PubMed  CAS  Google Scholar 

  30. Giaquinto S, Cobianchi A, Macera F, Nolfe G (1994) EEG recordings in the course of recovery from stroke. Stroke 25:2204–9

    PubMed  CAS  Google Scholar 

  31. Gross DW, Gotman J (1999) Correlation of high-frequency oscillations with the sleep–wake cycle and cognitive activity in humans. Neuroscience 94:1005–18

    Article  PubMed  CAS  Google Scholar 

  32. Huang JC, Nicholson C, OkadaYC (1990) Distortion of magnetic evoked fields and surface potentials by conductivity differences and boundaries in brain tissue. Biophysical J 57:1155–667

    Article  CAS  Google Scholar 

  33. Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. [Review]. Brain Res Rev 29:169–195

    Article  PubMed  CAS  Google Scholar 

  34. Kluytmans M, Van Everdingen KJ, Kappelle LJ, Ramos LM, Viergever MA, van der Grond J (2000) Prognostic value of perfusion- and diffusion-weighted MR imaging in first 3 days of stroke. Eur Radiol 10:1434–41

    Article  PubMed  CAS  Google Scholar 

  35. Komatsumoto S, Greenberg JH, Hickey WF, Reivich M (1995) Clinicopathological observations in middle cerebral artery occlusion in the cat. Neurol Res 17:120–8

    PubMed  CAS  Google Scholar 

  36. IFSECN (1974) A glossary of terms commonly used by clinical electroencephalographers. Electroencephalogr Clin Neurophysiol 37:538–548

    Article  Google Scholar 

  37. Lagreze HL, Levine RL, Pedula KL, Nickles RJ, Sunderland JS, Rowe BR (1987) Contralateral flow reduction in unilateral stroke: evidence for transhemispheric diaschisis. Stroke 18:882–6

    PubMed  CAS  Google Scholar 

  38. Lovblad KO, Baird AE, Schlaug G, Benfield A, Siewert B, Voetsch B et al. (1997) Ischemic lesion volumes in acute stroke by diffusion-weighted magnetic resonance imaging correlate with clinical outcome. Ann Neurol 42:164–170

    Article  PubMed  CAS  Google Scholar 

  39. Lu XC, Williams AJ, Tortella FC (2001) Quantitative electroencephalography spectral analysis and topographic mapping in a rat model of middle cerebral artery occlusion. Neuropathol Appl Neurobiol 27:481–95

    Article  PubMed  CAS  Google Scholar 

  40. Massimini M, Amzica F (2001) Extracellular calcium fluctuations and intracellular potentials in the cortex during the slow sleep oscillation. J Neurophysiol 85:1346–50

    PubMed  CAS  Google Scholar 

  41. Matteis M, Vernieri F, Troisi E, Pasqualetti P, Tibuzzi F, Caltagirone C, et al. (2003) Early cerebral hemodynamic changes during passive movements and motor recovery after stroke. J Neurol 250:810–7

    Article  PubMed  Google Scholar 

  42. Meador KJ, Ray PG, Echauz JR, Loring DW, Vachtsevanos GJ (2002) Gamma coherence and conscious perception. Neurology 59:847–54

    PubMed  CAS  Google Scholar 

  43. Melamed E, Lavy S, Portnoy Z, Sadan S, Carmon A (1975) Correlation between regional cerebral blood flow and EEG frequency of the contralateral hemisphere in acute cerebral infarction. J Neurol Sci 26:21–27

    Article  PubMed  CAS  Google Scholar 

  44. Menon V, Freeman WJ, Cutillo BA, Desmond JE, Ward MF, Bressler SL, et al. (1996) Spatio-temporal correlations in human gamma band electrocorticograms. Electroencephalogr Clin Neurophysiol 98:89–102

    Article  PubMed  CAS  Google Scholar 

  45. Meyer JS, Obara K, Muramatsu K (1993) Diaschisis [Review]. Neurol Res 15:362–6

    PubMed  CAS  Google Scholar 

  46. von Monakow C (1895) Experimentelle und pathologisch-anatomische Untersuchungen uber die Haubenregion, Sehhugel und die Regio subthalamica, nebst Beitragen zur Kenntnis fruh erworbener Grob- und Kleihirndefekten. Arch Psychtrie Nervenkrankheiten 27:1–128

    Article  Google Scholar 

  47. von Monakow C (1914 ) Die Lokalisation im Großhirn und der Abbau der Funktion durch Kortikale Herde. Bergmann JF, Wiesbaden

  48. Nakase T, Fushiki S, Naus CC (2003) Astrocytic gap junctions composed of connexin 43 reduce apoptotic neuronal damage in cerebral ischemia. Stroke 34:1987–93

    Article  PubMed  Google Scholar 

  49. Neumann-Haefelin T, Wittsack HJ, Wenserski F, Siebler M, Seitz RJ, Modder U et al. (1999) Diffusion- and perfusion-weighted MRI. The DWI/PWI mismatch region in acute stroke. Stroke 30:1591–97

    PubMed  CAS  Google Scholar 

  50. Nighoghossian N, Hermier M, Adeleine P, Derex L, Dugor JF, Philippeau F, et al. (2003) Baseline magnetic resonance imaging arameters and stroke outcome in patients treated by intravenous tissue plasminogen activator. Stroke 34:458–63

    Article  PubMed  CAS  Google Scholar 

  51. Nudo RJ, Wise BM, SiFuentes F, Milliken GW (1996) Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 272:1791–94

    Article  PubMed  CAS  Google Scholar 

  52. Oliviero A, Tecchio F, Zappasodi F, Pasqualetti P, Salustri C, Lupoi D, et al. (2004) Brain sensorimotor hand area functionality in acute stroke: insights from magnetoencephalography. Neuroimage 23:542–550

    Article  PubMed  Google Scholar 

  53. Orrison WW, Lewine JD (1993) Magnetic source imaging in neurosurgical practice. Perspect Neurol Surg 4:141–8

    Google Scholar 

  54. Péréon Y, Aubertin P, Guihéneuc P (1995) Prognostic significance of electrophysiological investigations in stroke patients: somatosensory and motor evoked potentials and sympathetic skin response. Neurophysiol Clin 25:146–57

    Article  PubMed  Google Scholar 

  55. Pizzella V, Tecchio F, Romani G-L, Rossini PM (1999) Functional localization of the sensory hand area with respect to the motor central gyrus knob. Neuroreport 10:1–6

    Article  Google Scholar 

  56. Rawanduzy A, Hansen A, Hansen TW, Nedergaard M (1997) Effective reduction of infarct volume by gap junction blockade in a rodent model of stroke. J Neurosurg 87:916–20

    Article  PubMed  CAS  Google Scholar 

  57. Robbins J, Levine RL, Maser A, Rosenbek JC, Kempster GB (1993) Swallowing after unilateral stroke of the cerebral cortex. Arch Phys Med Rehabil 74:1295–300

    Article  PubMed  CAS  Google Scholar 

  58. Rossini PM, Tecchio F, Pizzella V, Lupoi D, Cassetta E, Pasqualetti P, et al. (1998) On the reorganization of sensory hand areas after mono-hemispheric lesion: a functional (MEG)/ anatomical (MRI) integrative study. Brain Res 782:153–166

    Article  PubMed  CAS  Google Scholar 

  59. Rossini PM, Tecchio F, Pizzella V, Lupoi D, Cassetta E., Pasqualetti P (2001) Interhemispheric differences of sensory hand areas after monohemispheric stroke: MEG/MRI integrative study. Neuroimage 14:474–485

    Article  PubMed  CAS  Google Scholar 

  60. Rossini PM, Calautti C, Pauri F, Baron JC (2003) Post-stroke plastic reorganisation in the adult brain. [Review]. Lancet Neurol 2:493–502

    Article  PubMed  Google Scholar 

  61. Rossini PM, Altamura C, Ferretti A, Vernieri F, Zappasodi F, Caulo M, et al. (2004) Does cerebrovascular disease affect the coupling between neuronal activity and local hemodinamics? Brain 127:99–110

    Article  PubMed  CAS  Google Scholar 

  62. Saunders DE, Clifton AG, Brown MM (1996) Measurement of infarct size using MRI predicts prognosis in middle cerebral artery infarction. Stroke 26:2272–6

    Google Scholar 

  63. Scavini C, Rozza A, Bo P, Lanza E, Favalli L, Savoldi F et al. (1990) Kappa-opioid receptor changes and neurophysiological alterations during cerebral ischemia in rabbits. Stroke 21:943–7

    PubMed  CAS  Google Scholar 

  64. Schiene K, Bruehl C, Zilles K, Qu M, Hagemann G, Kraemer M et al. (1996) Neuronal hyperexcitability and reduction of GABAAreceptor expression in the surround of cerebral photothrombosis. J Cereb Blood Flow Metab 16:906–14

    Article  PubMed  CAS  Google Scholar 

  65. Shimizu T, Hosaki A, Hino T, Sato M, Komori T, Hirai S et al. (2002) Motor cortical disinhibition in the unaffected hemisphere after unilateral cortical stroke. Brain 125:1896–1907

    Article  PubMed  Google Scholar 

  66. Steriade M (2004) Neocortical cell classes are flexible entities. Nat Rev Neurosci 5:121

    Article  PubMed  CAS  Google Scholar 

  67. Tecchio F, Rossini PM, Pizzella V, Cassetta E, Romani GL (1997) Spatial properties and interhemispheric differences of the sensory hand cortical representation: a neuromagnetic study. Brain Res 767:100–8

    Article  PubMed  CAS  Google Scholar 

  68. Tecchio F, Pasqualetti P, Pizzella V, Romani GL, Rossini PM (2000) Morphology of somatosensory evoked fields: inter-hemispheric similarity as a index for physiological and pathological neural connectivity. Neurosci Lett 287:203–6

    Article  PubMed  CAS  Google Scholar 

  69. Tecchio F, Padua L, Aprile I, Rossini PM (2002) Carpal Tunnel Syndrome modifies sensory hand cortical somatotopy: a MEG study. Hum Brain Mapping 17:28–36

    Article  Google Scholar 

  70. Tecchio F, Babiloni C, Zappasodi F, Vecchio F, Pizzella V, Romani G-L, et al. (2003) Gamma synchronization in human primary somatosensory cortex as revealed by somatosensory evoked neuromagnetic fields. Brain Res 986:63–70

    Article  PubMed  CAS  Google Scholar 

  71. Tecchio F, De Lucia M, Salustri C, Montuori M, Bottaccio M, Babiloni C, et al. (2004) District-related frequency specificity in hand cortical representation: dynamics of regional activation and intra-regional functional connectivity. Brain Res 1014:80–86

    Article  PubMed  CAS  Google Scholar 

  72. Tecchio F, Zappasodi F, Pasqualetti P, Rossini PM (2005) Neural connectivity in hand sensorimotorbrain areas: an evaluation by evoked fields morphology. Hum Brain Mapp 24:99–108

    Article  PubMed  Google Scholar 

  73. Tecchio F, Zappasodi F, Pasqualetti P, Tombini M, Salustri C, Oliviero A, et al. (2005) Rhythmic brain activity at rest from rolandic areas in acute mono-hemispheric stroke: a magnetoencephalographic study. Neuroimage 28:72–78

    Article  PubMed  Google Scholar 

  74. Timmerhuis TPJ, Hageman G, Oosterloo SJ, Rozeboom AR (1996) The prognostic value of cortical magnetic stimulation in acute middle cerebral artery infarction compared to other parameters. Clin Neurol Neurosurg 98:231–6

    Article  PubMed  CAS  Google Scholar 

  75. Tong DC, Yenari MA, Albers GW, O’Brien M, Marks MP, Moseley ME (1998) Correlation of perfusion- and diffusion weighted MRI with NIHSS score in acute (6.5 hour) ischemic stroke. Neurology 50:864–870

    PubMed  CAS  Google Scholar 

  76. Traub RD, Kopell N, Bibbig A, Buhl EH, LeBeau FE, Whittington MA (2001) Gap junctions between interneuron dendrites can enhance synchrony of gamma oscillations in distributed networks. J Neurosci 21:9478–86

    PubMed  CAS  Google Scholar 

  77. Vieth JB (1990) Magnetoencephalography in the study of stroke cerebrovascular accident. Adv Neurol 54:261–269

    PubMed  CAS  Google Scholar 

  78. Warach S, Dashe JF, Edelman RR (1996) Clinical outcome in ischemic stroke predicted by early diffusion-weighted and perfusion magnetic resonance imaging: a preliminary analysis. J Cereb Blood Flow Metab 16:53–59

    Article  PubMed  CAS  Google Scholar 

  79. Ween JE, Alexander MP, D’Esposito M, Roberts M (1996) Factors predictive of stroke outcome in a rehabilitation setting. Neurology 47:388–92

    PubMed  CAS  Google Scholar 

  80. Wise R, Gibbs J, Frackowiak R, Marshall J, Jones T (1986 ) No evidence for transhemispheric diaschisis after human cerebral infarction. Stroke 17:853–61

    PubMed  CAS  Google Scholar 

  81. Wikstrom H, Roine RO, Salonen O, Lund KB, Salli E, Ilmoniemi RJ, et al. (1999) Somatosensory evoked magnetic fields from the primary somatosensory cortex (SI) in acute stroke. Clin Neurophysiol 110:916–23

    Article  PubMed  CAS  Google Scholar 

  82. Wikstrom H, Roine RO, Aronen HJ, Salonen O, Sinkkonen J, Ilmoniemi RJ, et al. (2000) Specific changes in somatosensory evoked magnetic fields during recovery from sensorimotor stroke. Ann Neurol 47:353–60

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the 2003 - protocol 2003060892 of the Italian Department of University and Research (MIUR) and by the RBNE01AZ92_003, PNR 2001–2003, Fondi di Investimento per la Ricerca di Base (FIRB) and by the IST/FET Integrated Project NEUROBOTICS - The fusion of NEUROscience and roBOTICS, Project no. 001917 under the 6th Framework Programme. The Authors thank Professors Vittorio Pizzella and GianLuca Romani for their continued support, Doctors Claudia Altamura, Maria Filippi, Antonio Oliviero, Francesco Tibuzzi, Giancarlo Zito for patient testing and TNFP Matilde Ercolani for her excellent technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Maria Rossini.

Additional information

Received in revised form: 6 July 2006

Appendix 1

Appendix 1

In all the text, the term “absolute” is used to indicate the absolute value of a variable with no reference to the value of the same variable in the other hemisphere; for the inter-hemispheric difference the term “asymmetry” is employed.

Evoked activity recording and analysis

Subjects underwent separate electrical stimulation of their left and right median nerves at the wrist. Stimuli consisted of 0.2 ms electric pulses (cathode proximal), with an inter-stimulus interval of 641 ms, and delivered through surface disks. Stimulus intensities were adjusted just above the threshold inducing a painless thumb twitch. Data were collected from the contralateral hemisphere, focusing on two early waves (M20, M30, i.e., respectively around 20 and 30 ms from the stimulus). These components are selectively generated in the brain’s sensorimotor areas contralateral to the stimulated hand, are quite stable, repeatable and independent of the subject’s attention.

Averaged M20 and M30 latencies, strengths and locations of their equivalent current dipoles (ECD), and their inter-hemispheric differences from stroke patients sample were compared with a normative data set recorded from a population of sex-age matched healthy subjects.

The SEF wave morphologies in the two hemispheres were also compared via a correlation based technique (see [66]). This morphologic analysis provides an evaluation of the inter-hemispheric correlations between sensory processes activated within primary sensorimotor areas, i.e. in the time interval starting at the M20 onset and lasting 30 ms; due to strong inter-hemispheric similarity in the same subject, a normative set was defined (sim_SI, 0.76 [66]) and the wave shape analysis was carried out taking the unaffected hemisphere’s wave shape as a template. Since a measurable onset of the M20 component is needed to define the two epochs, patients with missing SEF are not included in the inter-hemispheric morphology evaluation, unless being considered out of normative ranges.

Spontaneous brain activity recording and analysis

Spontaneous activity was recorded for three minutes. After a visual inspection data and the application of an artefact rejection procedures [5], the Power Spectral Density (PSD) was estimated for each MEG channel via the Welch procedure (2048 ms duration, Hanning window, 60% overlap, about 180 artefact free trials used). The total PSD was calculated as the mean of the PSDs obtained by the 16 inner gradiometer channels which covered a circular area of about 12 cm diameter. Total signal power was obtained by integrating the PSD value in the 2–44 Hz frequency interval. Spectral properties were investigated in the classical frequency bands [36], instead of being settled on the basis of individual spectral characteristics [33], as spectral properties are known to be affected by stroke. The investigated frequency bands were: 2–3.5 Hz (Delta), 4–7.5 Hz (Theta), 8–12.5 Hz (Alpha), 13–23 Hz (Beta1), 23.5–33 Hz (Beta2), 33.5–44 Hz (Gamma). Relative power spectral density (rPSD) was obtained as the ratio of PSD to total power in the 2–44 Hz frequency range. The relative power within each frequency band was calculated in the same way. All power values, absolute and relative, were log transformed in order to better fit normal distribution for statistical analysis.

Spectral entropy quantifies the complexity of the frequency content, i.e. the spectral shape. It gives a measure of how much a rPSD is fragmented (minimal entropy) or flat (maximal entropy), independently of the total power. For example, a sinusoid is characterized by only one spectral component and has minimal entropy; on the opposite extreme white noise, whose PSD contains all the frequencies with the same weight, has maximal entropy. Entropy is calculated in the 2–44 Hz frequency interval:

$$ -{\sum \limits_{f = 2}^{44}} {\rm rPSD}(f) \log_{2} {\rm rPSD}(f) $$

Since our frequency resolution was 0.49 Hz in a total range 2–44 Hz, the total number of points is 86 (= 42/0.49), resulting in a maximal entropy value of 6.476 (flat spectrum); for the lower limit, we considered one peak whose amplitude was 99% above the basal level, resulting in entropy value of 4.037 (peaked spectrum).

We also defined a hemispheric individual alpha frequency (IAF) as the frequency with maximal PSD in the 6–13 Hz band in each hemisphere [33].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tecchio, F., Pasqualetti, P., Zappasodi, F. et al. Outcome prediction in acute monohemispheric stroke via magnetoencephalography. J Neurol 254, 296–305 (2007). https://doi.org/10.1007/s00415-006-0355-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-006-0355-0

Keywords

Navigation