Skip to main content

Advertisement

Log in

Performance of three mathematical models for estimating age-at-death from multiple indicators of the adult skeleton

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

The mathematical method which will achieve the most accurate and precise age-at-death estimate from the adult skeleton is often debated. Some research promotes Bayesian analysis, which is widely considered better suited to the data construct of adult age-at-death distributions. Other research indicates that methods with less mathematical complexity produce equally accurate and precise age-at-death estimates. One of the advantages of Bayesian analysis is the ability to systematically combine multiple indicators, which is reported to improve the age-at-death estimate. Few comparisons exist between Bayesian analysis and less complex mathematical models when considering multiple skeletal indicators. This study aims to evaluate the performance of a Bayesian approach compared to a phase-based averaging method and linear regression analysis using multiple skeletal indicators. The three combination methods were constructed from age-at-death data collected from 330 adult skeletons contained in the Raymond A Dart and Pretoria Bone Collections in South Africa. These methods were tested and compared using a hold-out sample of 30 skeletons. As is frequently reported in literature, a balance between accuracy and precision was difficult to obtain from the three selected methods. However, the averaging and regression analysis methods outperformed the Bayesian approach in both accuracy and precision. Nevertheless, each method may be suited to its own unique situation—averaging to inform first impressions, multiple linear regression to achieve statistically defensible accuracies and precisions and Bayesian analysis to allow for cases where category adjustments or missing indicators are necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The authors are willing to make raw data available on request.

References

  1. Konigsberg LW, Frankenberg SR (1992) Estimation of age structure in anthropological demography. Am J Phys Anthropol 89:235–256. https://doi.org/10.1002/ajpa.1330890208

    Article  CAS  PubMed  Google Scholar 

  2. Obertová Z, Stewart A (2020) Probability distributions, hypothesis testing, and analysis. In: Obertová Z, Stewart A, Cattaneo C (eds) Statistics and Probability in Forensic Anthropology. Elsevier Academic Press, London, UK, pp 73–86

    Chapter  Google Scholar 

  3. Boldsen JL, Milner GR, Konigsberg LW, Wood JW (2002) Transition analysis: a new method for estimating age from skeletons. In: Hoppa RD, Vaupel JW (eds) Paleodemography: Age Distributions from Skeletal Samples. Cambridge University Press, Cambridge, UK, pp 73–106

    Chapter  Google Scholar 

  4. Nikita E (2014) The use of generalized linear models and generalized estimating equations in bioarchaeological studies. Am J Phys Anthropol 153:473–483. https://doi.org/10.1002/ajpa.22448

    Article  PubMed  Google Scholar 

  5. Lucy D, Aykroyd RG, Pollard AM, Solheim T (1996) A Bayesian approach to adult human age estimation from dental observations by Johanson’s age changes. J Forensic Sci 41:189–194. https://doi.org/10.1520/JFS15411J

    Article  CAS  PubMed  Google Scholar 

  6. Sironi E, Bozza S, Taroni F (2020) Age estimation of living persons: a coherent approach to inference and decision. In: Obertová Z, Stewart A, Cattaneo C (eds) Statistics and Probability in Forensic Anthropology. Elsevier Academic Press, London, UK, pp 183–208

    Chapter  Google Scholar 

  7. Berger CEH, van Wijk M, de Boer HH (2020) Bayesian inference in personal identification. In: Obertová Z, Stewart A, Cattaneo C (eds) Statistics and Probability in Forensic Anthropology. Elsevier Academic Press, London, UK, pp 301–312

    Chapter  Google Scholar 

  8. Milner GR, Boldsen JL (2012) Transition analysis: a validation study with known-age modern American skeletons. Am J Phys Anthropol 148:98–110. https://doi.org/10.1002/ajpa.22047

    Article  PubMed  Google Scholar 

  9. Nikita E, Nikitas P (2019) Skeletal age-at-death estimation: Bayesian versus regression methods. Forensic Sci Int 297:56–64. https://doi.org/10.1016/j.forsciint.2019.01.033

    Article  PubMed  Google Scholar 

  10. Uhl NM (2013) Age-at-death estimation. In: DiGangi EA, Moore MK (eds) Research Methods in Human Skeletal Biology. Elsevier Academic Press, Oxford, UK, pp 63–90

    Chapter  Google Scholar 

  11. Konigsberg LW, Herrmann NP, Kimmerle EH (2008) Estimation and evidence in forensic anthropology: age-at-death. J Forensic Sci 53:541–557. https://doi.org/10.1111/j.1556-4029.2008.00710.x

    Article  PubMed  Google Scholar 

  12. DiGangi EA, Bethard JD, Kimmerle EH, Konigsberg LW (2009) A new method for estimating age-at-death from the first rib. Am J Phys Anthropol 138:164–176. https://doi.org/10.1002/ajpa.20916

    Article  PubMed  Google Scholar 

  13. Langley-Shirley N, Jantz RL (2010) A Bayesian approach to age estimation in modern Americans from the clavicle. J Forensic Sci 55:571–583. https://doi.org/10.1111/j.1556-4029.2010.01089.x

    Article  PubMed  Google Scholar 

  14. Godde K, Hens S (2012) Age-at-death estimation in an Italian historic sample: a test of the Suchey-Brooks and transition analysis methods. Am J Phys Anthropol 149:259–265. https://doi.org/10.1002/ajpa.22126

    Article  PubMed  Google Scholar 

  15. Tangmose S, Thevissen P, Lynnerup N et al (2015) Age estimation in the living: transition analysis on developing third molars. Forensic Sci Int 257:512.e1-512.e7. https://doi.org/10.1016/j.forsciint.2015.07.049

    Article  Google Scholar 

  16. Hens S, Godde K (2016) Auricular surface aging: comparing two methods that assess morphological change in the ilium with Bayesian analyses. J Forensic Sci 61(Suppl 1):S30-38. https://doi.org/10.1111/1556-4029.12982

    Article  PubMed  Google Scholar 

  17. Nikita E, Xanthopoulou P, Kranioti E (2018) An evaluation of Bayesian age estimation using the auricular surface in modern Greek material. Forensic Sci Int Genet 291:1–11. https://doi.org/10.1016/j.forsciint.2018.07.029

    Article  Google Scholar 

  18. Merrit CE (2017) Inaccuracy and bias in adult skeletal age estimation: assessing the reliability of eight methods on individuals of varying body sizes. Forensic Sci Int 275:315.e1-315.e11

    Article  Google Scholar 

  19. Xanthopoulou P, Valakos E, Youlatos D, Nikita E (2018) Assessing the accuracy of cranial and pelvic ageing methods on human skeletal remains from a modern Greek assemblage. Forensic Sci Int 286:266.e1-266.e8. https://doi.org/10.1016/j.forsciint.2018.03.005

    Article  Google Scholar 

  20. Jooste N, L’Abbé EN, Pretorius S, Steyn M (2016) Validation of transition analysis as a method of adult age estimation in a modern South African sample. Forensic Sci Int 266:580.e1-580.e7. https://doi.org/10.1016/j.forsciint.2016.05.020

    Article  CAS  Google Scholar 

  21. Hurst C V (2010) A test of the forensic application of transition analysis with the pubic symphysis. In: Latham KE, Finnegan M (eds) Age Estimation of the Human Skeleton. Charles C Thomas, Springfield, IL 262–272

  22. Bethard JD (2005) A test of the transition analysis method for estimation of age-at-death in adult human skeletal remains. MA Thesis. University of Knoxville, TN

  23. Katz D, Suchey JM (1986) Age determination of the male os pubis. Am J Phys Anthropol 69:427–435. https://doi.org/10.1002/ajpa.1330690402

    Article  CAS  PubMed  Google Scholar 

  24. McKern TW, Stewart TD (1957) Skeletal age changes in young American males. Natick

  25. Lovejoy CO, Meindl RS, Pryzbeck TR, Mensforth RP (1985) Chronological metamorphosis of the auricular surface of the ilium: a new method for the determination of adult skeletal age at death. Am J Phys Anthropol 68:15–28. https://doi.org/10.1002/ajpa.1330680103

    Article  CAS  PubMed  Google Scholar 

  26. Buckberry JL, Chamberlain AT (2002) Age estimation from the auricular surface of the ilium: a revised method. Am J Phys Anthropol 119:231–239. https://doi.org/10.1002/ajpa.10130

    Article  CAS  PubMed  Google Scholar 

  27. Meindl RS, Lovejoy CO (1985) Ectocranial suture closure: a revised method for the determination of skeletal age at death based on the lateral-anterior sutures. Am J Phys Anthropol 68:57–66. https://doi.org/10.1002/ajpa.1330680106

    Article  CAS  PubMed  Google Scholar 

  28. Konigsberg LW, Frankenberg SR, Liversidge HM (2019) Status of mandibular third molar development as evidence in legal age threshold cases. J Forensic Sci 64:680–697. https://doi.org/10.1111/1556-4029.13926

    Article  PubMed  Google Scholar 

  29. İşcan MY, Steyn M (2013) Skeletal age. In: The Human Skeleton in Forensic Medicine. Charles C Thomas, Springfield, IL 59–142

  30. Buckberry J (2015) The (mis)use of adult age estimates in osteology. Ann Hum Biol 42:323–331. https://doi.org/10.3109/03014460.2015.1046926

    Article  PubMed  Google Scholar 

  31. Dayal MR, Kegley ADT, Štrkalj G et al (2009) The history and composition of the Raymond A. Dart collection of human skeletons at the University of the Witwatersrand, Johannesburg. South Africa Am J Phys Anthropol 140:324–335. https://doi.org/10.1002/ajpa.21072

    Article  PubMed  Google Scholar 

  32. L’Abbé EN, Loots M, Meiring JH (2005) The Pretoria Bone Collection: a modern South African skeletal sample. HOMO - J Comp Hum Biol 56:197–205. https://doi.org/10.1016/j.jchb.2004.10.004

    Article  Google Scholar 

  33. Nawrocki SP (2010) The nature and sources of error in the estimation of age at death from the skeleton. In: Latham KE, Finnegan M (eds) Age Estimation of the Human Skeleton. Charles C Thomas, Springfield, IL 79–101

  34. Nawrocki SP (1998) Regression formulae for estimating age at death from cranial suture closure. In: Reichs KJ (ed) Forensic Osteology: Advances in the Identification of Human Remains, 2nd Ed. Charles C Thomas, Springfield, IL 276–292

  35. Garvin HM, Passalacqua NV (2012) Current practices by forensic anthropologists in adult skeletal age estimation. J Forensic Sci 57:427–433. https://doi.org/10.1111/j.1556-4029.2011.01979.x

    Article  PubMed  Google Scholar 

  36. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174. https://doi.org/10.2307/2529310

    Article  CAS  PubMed  Google Scholar 

  37. Committee on Identifying the Needs of the Forensic Sciences Community (2009) Strengthening forensic science in the United States: a path forward. US Goverment Printing Office, Washington, DC

    Google Scholar 

  38. Jackes M (2000) Building the bases for paleodemographic analysis: adult age determination. In: Katzenberg MA, Saunders SR (eds) Biological Anthropology of the Human Skeleton. Wiley-Liss Inc. 417–466

  39. Mays S (2015) The effect of factors other than age upon skeletal age indicators in the adult. Ann Hum Biol 42(330):339. https://doi.org/10.3109/03014460.2015.1044470

    Article  Google Scholar 

  40. Merrit CE (2015) The influence of body size on adult skeletal age estimation methods. Am J Phys Anthropol 156:35–57. https://doi.org/10.1002/ajpa.22626

    Article  Google Scholar 

  41. Henderson CY, Nikita E (2016) Accounting for multiple effects and the problem of small sample sizes in osteology: a case study focussing on entheseal changes. Archaeol Anthropol Sci 8:805–817. https://doi.org/10.1007/s12520-015-0256-1

    Article  Google Scholar 

  42. Panahi MH, Mohammad K, Yarandi RB, Tehrani FR (2020) Dealing with sparse data bias in medical sciences: Comprehensive review of methods and applications. Acta Med Iran 58:591–598. https://doi.org/10.18502/acta.v58i11.5147

    Article  Google Scholar 

  43. Suchey JM, Wiseley D V, Katz D (1986) Evaluation of the Todd and McKern-Stewart methods for aging the male os pubis. In: Reichs KJ (ed) Forensic Osteology: Advances in the Identification of Human Remains. Charles C Thomas, Springfield 33–67

  44. Ackerman A, Steyn M (2014) A test of the Lamendin method of age estimation in South African canines. Forensic Sci Int 236:192.e1-192.e6. https://doi.org/10.1016/j.forsciint.2013.12.023

    Article  Google Scholar 

  45. Jones M, Gordon G, Brits D (2018) Age estimation accuracies from black South African os coxae. HOMO - J Comp Hum Biol 69:248–258. https://doi.org/10.1016/j.jchb.2018.08.004

    Article  CAS  Google Scholar 

  46. Botha D, Pretorius S, Myburgh J, Steyn M (2016) Age estimation from the acetabulum in South African black males. Int J Legal Med 130:809–817. https://doi.org/10.1007/s00414-015-1299-7

    Article  CAS  PubMed  Google Scholar 

  47. Meyer A, van der Merwe AE, Steyn M (2021) An evaluation of the Acsádi and Nemeskéri Complex Method of adult age estimation in a modern South African skeletal sample. Forensic Sci Int 321:110740. https://doi.org/10.1016/j.forsciint.2021.110740

    Article  CAS  PubMed  Google Scholar 

  48. Hagelthorn CL, Alblas A, Greyling L (2019) The accuracy of the Transition Analysis of aging on a heterogenic South African population. Forensic Sci Int 297:370.e1-370.e5. https://doi.org/10.1016/j.forsciint.2019.02.012

    Article  Google Scholar 

  49. Scheuer L, Black S (2000) Developmental Juvenile Osteology. Elsevier Academic Press, Bath

    Google Scholar 

  50. Osborne DL, Simmons TL, Nawrocki SP (2004) Reconsidering the auricular surface as an indicator of age at death. J Forensic Sci 49:1–7. https://doi.org/10.1520/JFS2003348

    Article  Google Scholar 

  51. Rissech C, Estabrook GF, Cunha E, Malgosa A (2006) Using the acetabulum to estimate age at death of adult males. J Forensic Sci 51:213–229. https://doi.org/10.1111/j.1556-4029.2006.00060.x

    Article  PubMed  Google Scholar 

  52. Passalacqua NV (2009) Forensic age-at-death estimation from the human sacrum. J Forensic Sci 54:255–262. https://doi.org/10.1111/j.1556-4029.2008.00977.x

    Article  PubMed  Google Scholar 

  53. van der Merwe AE, İşcan MY, L’Abbé EN (2006) The pattern of vertebral osteophyte development in a South African population. Int J Osteoarchaeol 16:459–464. https://doi.org/10.1002/oa.841

    Article  Google Scholar 

  54. Stewart TD (1958) The rate of development of vertebral osteoarthritis in American whites and its significance in skeletal age identification. Leech 28:144–151

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the University of the Witwatersrand and the University of Pretoria for the use of the Raymond A Dart and Pretoria Bone Collections respectively, as well as the curators of these collections. The authors would like to acknowledge the original artwork provided by TMR Houlton for Supplementary Figures 5, 6 and 7.

Funding

This research was partially funded through the financial assistance of the National Research Foundation (NRF) and the JJJ Smieszek Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolene Jooste.

Ethics declarations

Ethics approval

Ethics clearance specific to this study was not required as an ethics waiver (W-CJ-140604–1) applies to studies conducted on material donated for the purposes of training and research as stipulated in the National Health Act No 61 of 2003 of South Africa.

Consent to participate

N/A.

Consent for publication

N/A.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9.79 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jooste, N., Pretorius, S. & Steyn, M. Performance of three mathematical models for estimating age-at-death from multiple indicators of the adult skeleton. Int J Legal Med 136, 739–751 (2022). https://doi.org/10.1007/s00414-021-02727-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-021-02727-4

Keywords

Navigation