Skip to main content
Log in

Accuracies of discriminant function equations for sex estimation using long bones of upper extremities

  • Population Data
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

One of the scopes of practice of forensic anthropologists is the estimation of sex from skeletal remains. As a result, population-specific discriminant function equations have been developed from measurements of various bones of the human skeletons. Steyn, Patriquin (Forensic Sci Int 191 (1-3):113, 2009) noted that the lack of skeletal collections and data from most parts of the world has made this process impractical. Previous attempts to develop global discriminant function equations from measurements of the pelvis showed that population-specific equations are not necessary as equations derived from other populations yielded high sex estimation scores when applied to a different population. However, information on the suitability and applicability of generalised equations in sex estimation using long bones is still scarce. It is, therefore, the aim of this study to assess the accuracies of population-specific discriminant function equations derived from measurements of long bones of the upper limb of South African population groups. Data analysed in the current study were obtained from Mokoena, Billings, Bidmos, Mazengenya (Forensic Sci Int 278:404, 2017) and Mokoena, Billings, Gibbon, Bidmos, Mazengenya (Science & Justice 6(59):660–666, 2019) in which a total sample of 988 bones (humeri, radii, and ulnae) of South Africans of African descent (SAAD), South Africans of European descent (SAED) and Mixed Ancestry South Africans (MASA) were measured. Stepwise and direct discriminant function analyses were performed on the pooled data. Each function was used to estimate the sex of cases in each population group separately and average accuracies calculated. Thereafter, population-specific discriminant function equations were formulated for each population group and then applied to other population groups. The average accuracies of functions for pooled data ranged between 80.7 and 86.5%. The cross-validation average accuracies remained unchanged for most functions, confirming the validity of derived functions. A drop in average accuracies (0.8–5.3%) was observed when the functions were tested on a sample of SAAD while increased average accuracy was observed for the SAED and MASA (0.5–6.9%). When population-specific functions for a particular population group were applied to other groups, a wide range of a drop in average accuracies was observed (1.3 to 22.4%). This thereby confirms that population-specific equations should not be applied to other population groups. However, discriminant function equations from the pooled data of South Africans are accurate in the estimation of sex and efforts should be made towards the development and validation of such equations from as many bones of the human skeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. İşcan MY, Loth SR (1997) The scope of forensic anthropology. In: Eckert WG (ed) Introduction to forensic sciences. CRC Press, Boca Raton, pp 343–369

    Google Scholar 

  2. Krishan K, Chatterjee PM, Kanchan T, Kaur S, Baryah N, Singh R (2016) A review of sex estimation techniques during examination of skeletal remains in forensic anthropology casework. Forensic Sci Int 261:165. e161-165. e168

    Google Scholar 

  3. Iscan MY, Steyn M (2013) The human skeleton in forensic medicine. Charles C Thomas Publisher, Springfield

    Google Scholar 

  4. Krogman WM, Isçan MY (1986) The human skeleton in forensic medicine. Charles C. Thomas, Springfield, pp 413–457

    Google Scholar 

  5. Bruzek J (2002) A method for visual determination of sex, using the human hip bone. Am J Phys Anthropol 117(2):157–168

    PubMed  Google Scholar 

  6. González PN, Bernal V, Perez SI, Barrientos G (2007) Analysis of dimorphic structures of the human pelvis: its implications for sex estimation in samples without reference collections. J Archaeol Sci 34(10):1720–1730

    Google Scholar 

  7. Mokoena P, Billings BK, Gibbon V, Bidmos MA, Mazengenya P (2019) Development of discriminant functions to estimate sex in upper limb bones for mixed ancestry South Africans. Sci Justice 6(59):660–666

    Google Scholar 

  8. Steyn M, İşcan MY (1997) Sex determination from the femur and tibia in south African whites. Forensic Sci Int 90(1–2):111–119

    CAS  PubMed  Google Scholar 

  9. Steyn M, İşcan MY (1999) Osteometric variation in the humerus: sexual dimorphism in South Africans. Forensic Sci Int 106(2):77–85

    CAS  PubMed  Google Scholar 

  10. Steyn M, İşcan MY (1998) Sexual dimorphism in the crania and mandibles of South African whites. Forensic Sci Int 98(1–2):9–16

    CAS  PubMed  Google Scholar 

  11. Asala SA, Bidmos MA, Dayal MR (2004) Discriminant function sexing of fragmentary femur of South African blacks. Forensic Sci Int 145(1):25–29

    CAS  PubMed  Google Scholar 

  12. Bidmos M, Adebesin A, Mazengenya P, Olateju O, Adegboye O (2020) Estimation of sex from metatarsals using discriminant function and logistic regression analyses. Aust J Forensic Sci:1–14. https://doi.org/10.1080/00450618.2019.1711180

  13. Fasemore MD, Bidmos MA, Mokoena P, Imam A, Billings BK, Mazengenya P (2018) Dimensions around the nutrient foramina of the tibia and fibula in the estimation of sex. Forensic Sci Int 287:222. e221-222. e227

    Google Scholar 

  14. Burrows AM, Zanella VP, Brown TM (2003) Testing the validity of metacarpal use in sex assessment of human skeletal remains. J Forensic Sci 48(1):1–4

    Google Scholar 

  15. Kotěrová A, Velemínská J, Dupej J, Brzobohatá H, Pilný A, Brůžek J (2017) Disregarding population specificity: its influence on the sex assessment methods from the tibia. Int J Legal Med 131(1):251–261

    PubMed  Google Scholar 

  16. Hora M, Sládek V (2018) Population specificity of sex estimation from vertebrae. Forensic Sci Int 291:279. e271-279. e212

    Google Scholar 

  17. Spradley MK, Jantz RL (2011) Sex estimation in forensic anthropology: skull versus postcranial elements. J Forensic Sci 56(2):289–296

    PubMed  Google Scholar 

  18. Dayal MR, Spocter MA, Bidmos MA (2008) An assessment of sex using the skull of black South Africans by discriminant function analysis. Homo 59(3):209–221

    CAS  PubMed  Google Scholar 

  19. Albanese J (2013) A method for estimating sex using the clavicle, humerus, radius, and ulna. J Forensic Sci 58(6):1413–1419

    PubMed  Google Scholar 

  20. Papaioannou VA, Kranioti EF, Joveneaux P, Nathena D, Michalodimitrakis M (2012) Sexual dimorphism of the scapula and the clavicle in a contemporary Greek population: applications in forensic identification. Forensic Sci Int 217(1-3):231. e231-231. e237

    Google Scholar 

  21. Mokoena P, Billings BK, Bidmos MA, Mazengenya P (2017) Sex estimation using dimensions around the nutrient foramen of the long bones of the arm and forearm in South Africans. Forensic Sci Int 278:404. e401-404. e405

    Google Scholar 

  22. Albanese J, Cardoso HF, Saunders SR (2005) Universal methodology for developing univariate sample-specific sex determination methods: an example using the epicondylar breadth of the humerus. J Archaeol Sci 32(1):143–152

    Google Scholar 

  23. Bongiovanni R, Spradley MK (2012) Estimating sex of the human skeleton based on metrics of the sternum. Forensic Sci Int 219(1-3):290. e291-290. e297

    Google Scholar 

  24. Chandrakanth H, Kanchan T, Krishan K (2014) Osteometric analysis for sexing of modern sternum–an autopsy study from South India. Legal Med 16(6):350–356

    CAS  PubMed  Google Scholar 

  25. García-Parra P, Fernández ÁP, Djorojevic M, Botella M, Alemán I (2014) Sexual dimorphism of human sternum in a contemporary Spanish population. Forensic Sci Int 244:313. e311-313. e319

    Google Scholar 

  26. Gonzalez PN, Bernal V, Perez SI (2009) Geometric morphometric approach to sex estimation of human pelvis. Forensic Sci Int 189(1–3):68–74

    PubMed  Google Scholar 

  27. Case DT, Ross AH (2007) Sex determination from hand and foot bone lengths. J Forensic Sci 52(2):264–270

    PubMed  Google Scholar 

  28. Falsetti AB (1995) Sex assessment from metacarpals of the human hand. J Forensic Sci 40(5):774–776

    CAS  PubMed  Google Scholar 

  29. Jee S-C, Bahn S, Yun MH (2015) Determination of sex from various hand dimensions of Koreans. Forensic Sci Int 257:521. e521-521. e510

    Google Scholar 

  30. Smith SL (1996) Attribution of hand bones to sex and population groups. J Forensic Sci 41(3):469–477

    CAS  PubMed  Google Scholar 

  31. Wilbur AK (1998) The utility of hand and foot bones for the determination of sex and the estimation of stature in a prehistoric population from west-central Illinois. Int J Osteoarchaeol 8(3):180–191

    Google Scholar 

  32. Bidmos MA, Asala SA (2003) Discriminant function sexing of the calcaneus of the South African whites. J Forensic Sci 48(6):1213–1218

    PubMed  Google Scholar 

  33. Bidmos MA, Asala SA (2004) Sexual dimorphism of the calcaneus of South African blacks. J Forensic Sci 49(3):446–450

    PubMed  Google Scholar 

  34. Cardoso HF (2008) Sample-specific (universal) metric approaches for determining the sex of immature human skeletal remains using permanent tooth dimensions. J Archaeol Sci 35(1):158–168

    Google Scholar 

  35. STATS SA (2019) Governance, public safety and justice survey. , vol Accessed 20 February 2020

  36. Franklin D, Freedman L, Milne N (2005) Sexual dimorphism and discriminant function sexing in indigenous South African crania. Homo 55(3):213–228

    CAS  PubMed  Google Scholar 

  37. Krüger GC, L’Abbé EN, Stull KE (2017) Sex estimation from the long bones of modern South Africans. Int J Legal Med 131(1):275–285

    PubMed  Google Scholar 

  38. Bidmos M, Steinberg N, Kuykendall K (2005) Patella measurements of South African whites as sex assessors. Homo 56(1):69–74

    CAS  PubMed  Google Scholar 

  39. Bidmos MA, Dayal MR (2003) Sex determination from the talus of South African whites by discriminant function analysis. Am J Forensic Med Pathol 24(4):322–328

    PubMed  Google Scholar 

  40. Steyn M, Patriquin M (2009) Osteometric sex determination from the pelvis—does population specificity matter? Forensic Sci Int 191(1-3):113. e111-113. e115

    Google Scholar 

  41. Macho GA (1990) Is sexual dimorphism in the femur a “population specific phenomenon”? Z Morphol Anthropol 78(2):229–242

    CAS  PubMed  Google Scholar 

  42. Albanese J, Osley SE, Tuck A (2012) Do century-specific equations provide better estimates of stature? A test of the 19–20th century boundary for the stature estimation feature in Fordisc 3.0. Forensic science international 219(1-3):286. e281-286. e283

    Google Scholar 

  43. Macaluso PJ Jr (2010) Sex determination from the acetabulum: test of a possible non-population-specific discriminant function equation. J Forensic Legal Med 17(6):348–351

    Google Scholar 

  44. Mazengenya P, Billings B (2016) Topographic and morphometric features of the nutrient foramina of the fibula in the South African mixed-ancestry population group and their surgical relevance. Eur J Anat 20(4):329–336

    Google Scholar 

  45. Mazengenya P, Fasemore MD (2015) Morphometric studies of the nutrient foramen in lower limb long bones of adult black and white South Africans. Eur J Anat 19(2):155–163

    Google Scholar 

  46. Pereira G, Lopes P, Santos A, Silveira F (2011) Nutrient foramina in the upper and lower limb long bones: morphometric study in bones of Southern Brazilian adults. Int J Morphol 29(2):514–520

    Google Scholar 

  47. Dayal MR, Kegley AD, Štrkalj G, Bidmos MA, Kuykendall KL (2009) The history and composition of the Raymond A. Dart collection of human skeletons at the University of the Witwatersrand, Johannesburg, South Africa. Am J Phys Anthropol 140(2):324–335

  48. Maass P, Friedling LJ (2019) Documented composition of cadaveric skeletal remains in the University of Cape Town Human Skeletal Collection, South Africa. Forensic Sci Int 294:219. e211-219. e217

    Google Scholar 

  49. Charisi D, Eliopoulos C, Vanna V, Koilias CG, Manolis SK (2011) Sexual dimorphism of the arm bones in a modern Greek population. J Forensic Sci 56(1):10–18

    PubMed  Google Scholar 

  50. Scott S, Ruengdit S, Peckmann TR, Mahakkanukrauh P (2017) Sex estimation from measurements of the calcaneus: applications for personal identification in Thailand. Forensic Sci Int 278:405. e401-405. e408

    Google Scholar 

  51. Patriquin ML, Loth S, Steyn M (2003) Sexually dimorphic pelvic morphology in South African whites and blacks. Homo 53(3):255–262

    CAS  PubMed  Google Scholar 

  52. Bidmos MA, Dayal MR (2004) Further evidence to show population specificity of discriminant function equations for sex determination using the talus of South African blacks. J Forensic Sci 49(6):1165–1170

    PubMed  Google Scholar 

  53. Holman DJ, Bennett KA (1991) Determination of sex from arm bone measurements. Am J Phys Anthropol 84(4):421–426

    CAS  PubMed  Google Scholar 

  54. Mall G, Hubig M, Büttner A, Kuznik J, Penning R, Graw M (2001) Sex determination and estimation of stature from the long bones of the arm. Forensic Sci Int 117(1–2):23–30

    CAS  PubMed  Google Scholar 

  55. Frutos LR (2005) Metric determination of sex from the humerus in a Guatemalan forensic sample. Forensic Sci Int 147(2–3):153–157

    Google Scholar 

  56. Kranioti EF, Michalodimitrakis M (2009) Sexual dimorphism of the humerus in contemporary Cretans—a population-specific study and a review of the literature. J Forensic Sci 54(5):996–1000

    PubMed  Google Scholar 

  57. Dayal MR, Bidmos A (2005) Discriminating sex in south African blacks using patella dimensions. J Forensic Sci 50(6):1294–1297

    PubMed  Google Scholar 

  58. Stull KE, Kenyhercz MW, L’Abbé EN (2014) Ancestry estimation in South Africa using craniometrics and geometric morphometrics. Forensic Sci Int 245:206. e201–206. e207

    Google Scholar 

  59. Albanese J, Tuck A, Gomes J, Cardoso HF (2016) An alternative approach for estimating stature from long bones that is not population-or group-specific. Forensic Sci Int 259:59–68

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mubarak A. Bidmos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(XLSX 17 kb)

ESM 2

(XLSX 10 kb)

ESM 3

(XLSX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bidmos, M.A., Mazengenya, P. Accuracies of discriminant function equations for sex estimation using long bones of upper extremities. Int J Legal Med 135, 1095–1102 (2021). https://doi.org/10.1007/s00414-020-02458-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-020-02458-y

Keywords

Navigation