Skip to main content
Log in

Identification of female-specific blood stains using a 17β-estradiol-targeted aptamer-based sensor

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Blood stain evidence obtained from a violent crime scene provides decisive clues that can enable a case to be solved through forensic analyses such as genetic identification. However, collected samples usually contain a mixture of biological material from different sources, making genetic identification difficult. To address this issue, we developed an activatable aptamer sensor targeting 17β-estradiol for detection of female-specific blood in mixed samples. With the sensor, we were able to detect blood originating from females using a variable light source (495 nm). The sensor was especially sensitive to blood from young females (10–40 years) but not to blood from older females (≥ 50 years). Genomic DNA was extracted from the female blood specimens identified by this method and used for quantification and short tandem repeat genotyping. We confirmed that there was no fluorescence interference from the aptamer sensor. These results indicate that this novel aptamer sensor can be used to analyze evidentiary blood samples and thereby facilitate subsequent genetic identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shi H, He X, Wang K, Wu X, Ye X, Guo Q, Tan W, Qing Z, Yang X, Zhou B (2011) Activatable aptamer probe for contrast-enhanced in vivo cancer imaging based on cell membrane protein-triggered conformation alteration. Proc Natl Acad Sci U S A 108:3900–3905. https://doi.org/10.1073/pnas.1016197108

    Article  CAS  Google Scholar 

  2. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822. https://doi.org/10.1038/346818a0

    Article  CAS  Google Scholar 

  3. Daniels DA, Chen H, Hicke BJ, Swiderek KM, Gold L (2003) Atenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proc Natl Acad Sci U S A 100:15416–15421. https://doi.org/10.1073/pnas.2136683100

    Article  CAS  Google Scholar 

  4. Liu J, Bai W, Niu S, Zhu C, Yang S, Chen A (2014) Highly sensitive colorimetric detection of 17beta-estradiol using split DNA aptamers immobilized on unmodified gold nanoparticles. Sci Rep 4:7571. https://doi.org/10.1038/srep07571

    Article  CAS  Google Scholar 

  5. Stoltenburg R, Reinemann C, Strehlitz B (2007) SELEX—a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 24:381–403. https://doi.org/10.1016/j.bioeng.2007.06.001

    Article  CAS  Google Scholar 

  6. McKeague M, Derosa MC (2012) Challenges and opportunities for small molecule aptamer development. J Nucleic Acids 2012:748913. https://doi.org/10.1155/2012/748913

    Article  Google Scholar 

  7. Shi H, Tang Z, Kim Y, Nie H, Huang YF, He X, Deng K, Wang K, Tan W (2010) In vivo fluorescence imaging of tumors using molecular aptamers generated by cell-SELEX. Chem Asian J 5:2209–2213. https://doi.org/10.1002/asia.201000242

    Article  CAS  Google Scholar 

  8. Huang P, Chandra V, Rastinejad F (2010) Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu Rev Physiol 72:247–272. https://doi.org/10.1146/annurev-physiol-021909-135917

    Article  CAS  Google Scholar 

  9. Bondar G, Kuo J, Hamid N, Micevych P (2009) Estradiol-induced estrogen receptor-alpha trafficking. J Neurosci 29:15323–15330. https://doi.org/10.1523/JNEUROSCI.2107-09.2009

    Article  CAS  Google Scholar 

  10. Ryan KJ (1982) Biochemistry of aromatase: significance to female reproductive physiology. Cancer Res 42: 3342s–3344s

  11. Tai SS, Welch MJ (2005) Development and evaluation of a reference measurement procedure for the determination of estradiol-17beta in human serum using isotope-dilution liquid chromatography-tandem mass spectrometry. Anal Chem 77:6359–6363. https://doi.org/10.1021/ac050837i

    Article  CAS  Google Scholar 

  12. Yildirim N, Long F, Gao C, He M, Shi HC, Gu AZ (2012) Aptamer-based optical biosensor for rapid and sensitive detection of 17beta-estradiol in water samples. Environ Sci Technol 46:3288–3294. https://doi.org/10.1021/es203624w

    Article  CAS  Google Scholar 

  13. Huh YS, Erickson D (2010) Aptamer based surface enhanced Raman scattering detection of vasopressin using multilayer nanotube arrays. Biosens Bioelectron 25:1240–1243. https://doi.org/10.1016/j.bios.2009.09.040

    Article  CAS  Google Scholar 

  14. Chen JW, Liu XP, Feng KJ, Liang Y, Jiang JH, Shen GL, Yu RQ (2008) Detection of adenosine using surface-enhanced Raman scattering based on structure-switching signaling aptamer. Biosens Bioelectron 24:66–71. https://doi.org/10.1016/j.bios.2008.03.013

    Article  CAS  Google Scholar 

  15. Liu J, Cao Z, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109:1948–1998. https://doi.org/10.1021/cr030183i

    Article  CAS  Google Scholar 

  16. Kim YS, Jung HS, Matsuura T, Lee HY, Kawai T, MB G (2007) Electrochemical detection of 17beta-estradiol using DNA aptamer immobilized gold electrode chip. Biosens Bioelectron 22:2525–2531. https://doi.org/10.1016/j.bios.2006.10.004

    Article  CAS  Google Scholar 

  17. Alsager OA, Kumar S, Zhu B, Travas-Sejdic J, McNatty KP, Hodgkiss JM (2015) Ultrasensitive colorimetric detection of 17beta-estradiol: the effect of shortening DNA aptamer sequences. Anal Chem 87:4201–4209. https://doi.org/10.1021/acs.analchem.5b00335

    Article  CAS  Google Scholar 

  18. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415. https://doi.org/10.1093/nar/gkg595

    Article  CAS  Google Scholar 

  19. Lee H, Park MJ, Sun SH, Choi DH, Lee YH, Park KW, Chun BW (2016) Ascorbic acid and vitamin C-containing beverages delay the leucomalachite green reaction to detect latent bloodstains. Leg Med (Tokyo) 23:79–85. https://doi.org/10.1016/j.legalmed.2016.10.003

    Article  CAS  Google Scholar 

  20. Stoica BA, Bunescu S, Neamtu A, Bulgaru-Iliescu D, Foia L, Botnariu EG (2016) Improving luminol blood detection in forensics. J Forensic Sci 61:1331–1336. https://doi.org/10.1111/1556-4029.13141

    Article  CAS  Google Scholar 

  21. Quickenden TI, Cooper PD (2001) Increasing the specificity of the forensic luminol test for blood. Luminescence 16:251–253. https://doi.org/10.1002/bio.635

    Article  CAS  Google Scholar 

  22. Quickenden TI, Creamer JI (2001) A study of common interferences with the forensic luminol test for blood. Luminescence 16:295–298. https://doi.org/10.1002/bio.657

    Article  CAS  Google Scholar 

  23. Gao W, Wang C, Muzyka K, Kitte SA, Li J, Zhang W, Xu G (2017) Artemisinin-luminol chemiluminescence for forensic bloodstain detection using a smart phone as a detector. Anal Chem 89:6160–6165. https://doi.org/10.1021/acs.analchem.7b01000

    Article  CAS  Google Scholar 

  24. Ermida C, Navega D, Cunha E (2017) Luminol chemiluminescence: contribution to postmortem interval determination of skeletonized remains in Portuguese forensic context. Int J Legal Med 131:1149–1153. https://doi.org/10.1007/s00414-017-1547-0

    Article  Google Scholar 

  25. Caudullo G, Caruso V, Cappella A, Sguazza E, Mazzarelli D, Amadasi A, Cattaneo C (2017) Luminol testing in detecting modern human skeletal remains: a test on different types of bone tissue and a caveat for PMI interpretation. Int J Legal Med 131:287–292. https://doi.org/10.1007/s00414-016-1493-2

    Article  Google Scholar 

  26. Blenkharn JI (2008) Luminol-based forensic detection of latent blood; an approach to rapid wide-area screening combined with Glo-Germ oil simulant studies. J Hosp Infect 69:405–406. https://doi.org/10.1016/j.jhin.2008.04.006

    Article  CAS  Google Scholar 

  27. Lakhin AV, Tarantul VZ, Gening LV (2013) Aptamers: problems, solutions and prospects. Acta Nat 5:34–43

    Article  CAS  Google Scholar 

  28. Mayer G (2009) The chemical biology of aptamers. Angew Chem Int Ed Engl 48:2672–2689. https://doi.org/10.1002/anie.200804643

    Article  CAS  Google Scholar 

  29. Strehlitz B, Reinemann C, Linkorn S, Stoltenburg R (2012) Aptamers for pharmaceuticals and their application in environmental analytics. Bioanal Rev 4:1–30. https://doi.org/10.1007/s12566-011-0026-1

    Article  Google Scholar 

  30. Yoshida W, Mochizuki E, Takase M, Hasegawa H, Morita Y, Yamazaki H, Sode K, Ikebukuro K (2009) Selection of DNA aptamers against insulin and construction of an aptameric enzyme subunit for insulin sensing. Biosens Bioelectron 24:1116–1120. https://doi.org/10.1016/j.bios.2008.06.016

    Article  CAS  Google Scholar 

  31. Greenblatt RB, Oettinger M, Bohler CS (1976) Estrogen-androgen levels in aging men and women: therapeutic considerations. J Am Geriatr Soc 24:173–178. https://doi.org/10.1111/j.1532-5415.1976.tb04294.x

    Article  CAS  Google Scholar 

  32. Rettberg JR, Yao J, Brinton RD (2014) Estrogen: a master regulator of bioenergetic systems in the brain and body. Front Neuroendocrinol 35:8–30. https://doi.org/10.1016/j.yfrne.2013.08.001

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Korean government and by a grant from the Forensic Research Program of the National Forensic Service (no. NFS2017DNA02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung-Won Chun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

ESM 1

(PDF 563 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, JY., Park, JH., Kim, M.I. et al. Identification of female-specific blood stains using a 17β-estradiol-targeted aptamer-based sensor. Int J Legal Med 132, 91–98 (2018). https://doi.org/10.1007/s00414-017-1718-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-017-1718-z

Keywords

Navigation