Skip to main content
Log in

Sex estimation of infants through geometric morphometric analysis of the ilium

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

A Correction to this article was published on 13 November 2017

This article has been updated

Abstract

In archeology or forensics, the analysis of the ilia is often used to determine the age and sex of unknown individuals. However, sex determination using the skeletal remains of individuals who did not develop secondary sexual characteristics remains controversial. Accurately estimating the sex of subadults is hampered by a small number of studies based on identified skeletal collections of juvenile individuals. Here, we analyzed the sexual dimorphism of the subadult ilia using geometric morphometric techniques and individuals from the osteological collection of identified subadults from San José’s graveyard (Granada). Seventy-one left ilia from 40 males and 31 females aged between birth and 1 year were included in the analysis. Three landmarks and 27 semi-landmarks of the ilia were placed. By principal component analysis, we found that the size and shape of the ilia could be used to differentiate males and females.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 13 November 2017

    After publication of the original article, it was brought to authors’ attention two errors that were included in the final publication.

References

  1. Baker BJ, Dupras TL, Tocheri MW (2005) The osteology of infants and children (no. 12). Texas A&M University Press, Texas

    Google Scholar 

  2. Lewis ME (2007) The bioarchaeology of children: perspectives from biological and forensic anthropology, vol 50. Cambridge University Press, Cambridge

    Google Scholar 

  3. Saunders SR (2008) Juvenile skeletons and growth-related studies. In: Katzenberg MA, Saunders SR (eds) Biological anthropology of the human skeleton, 2nd edn. Wiley-Liss, New York, pp 117–146 

  4. Cunningham C, Scheuer L, Black S (2000) Developmental juvenile osteology. Academic Press, Cambridge

    Google Scholar 

  5. Ferembach D, Schwindezky I, Stoukal M (1980) Recommendation for age and sex diagnoses of skeletons. J Hum Evol 9:517–549

    Article  Google Scholar 

  6. Buikstra JE, Ubelaker DH (1994) Standards for data collection from human skeletal remains: proceedings of a seminar at the Field Museum of Natural History. Arkansas Archeological Survey, Fayetteville, AR

    Google Scholar 

  7. Bruzek J (2002) A method for visual determination of sex, using the human hip bone. Am J Phys Anthropol 117(2):157–168

    Article  PubMed  Google Scholar 

  8. Albanese J (2003) A metric method for sex determination using the hipbone and the femur. J Forensic Sci 48(2):263–273

    Article  PubMed  Google Scholar 

  9. Boucher BJ (1957) Sex differences in the foetal pelvis. Am J Phys Anthropol 15(4):581–600

    Article  CAS  PubMed  Google Scholar 

  10. Weaver DS (1980) Sex differences in the ilia of a known sex and age sample of fetal and infant skeletons. Am J Phys Anthropol 52(2):191–195

    Article  CAS  PubMed  Google Scholar 

  11. Schutkowski H (1993) Sex determination of infant and juvenile skeletons: I. Morphognostic features. Am J Phys Anthropol 90(2):199–205

    Article  CAS  PubMed  Google Scholar 

  12. Cardoso HF (2008) Sample-specific (universal) metric approaches for determining the sex of immature human skeletal remains using permanent tooth dimensions. J Archaeol Sci 35(1):158–168

    Article  Google Scholar 

  13. Sutter RC (2003) Nonmetric subadult skeletal sexing traits: I. A blind test of the accuracy of eight previously proposed methods using prehistoric known-sex mummies from northern Chile. J Forensic Sci 48(5):927–935

    Article  PubMed  Google Scholar 

  14. Vlak D, Roksandic M, Schillaci MA (2008) Greater sciatic notch as a sex indicator in juveniles. Am J Phys Anthropol 137(3):309–315

    Article  PubMed  Google Scholar 

  15. Cardoso HF, Saunders SR (2008) Two arch criteria of the ilium for sex determination of immature skeletal remains: a test of their accuracy and an assessment of intra-and inter-observer error. Forensic Sci Int 178(1):24–29

    Article  PubMed  Google Scholar 

  16. González P, Bernal V, Barrientos G (2005) Estimación del dimorfismo sexual en el esqueleto pélvico y mandibular de individuos subadultos: comparación de técnicas visuales y de morfometría geométrica. Werken 6:49–61

    Google Scholar 

  17. García Mancuso R, González PN (2013) Reconocimiento de rasgos dimórficos en ilion infantil mediante el uso de morfometría geométrica. Cs Morfol 15(1):1–11

  18. Wilson LA, MacLeod N, Humphrey LT (2008) Morphometric criteria for sexing juvenile human skeletons using the ilium. J Forensic Sci 53(2):269–278

    Article  PubMed  Google Scholar 

  19. Wilson LA, Cardoso HF, Humphrey LT (2011) On the reliability of a geometric morphometric approach to sex determination: a blind test of six criteria of the juvenile ilium. Forensic Sci Int 206(1):35–42

    Article  PubMed  Google Scholar 

  20. Wilson LA, Ives R, Cardoso HF, Humphrey LT (2015) Shape, size, and maturity trajectories of the human ilium. Am J Phys Anthropol 156(1):19–34

    Article  PubMed  Google Scholar 

  21. Olivares JI, Aguilera IA (2016) Validation of the sex estimation method elaborated by Schutkowski in the Granada Osteological Collection of identified infant and young children: analysis of the controversy between the different ways of analyzing and interpreting the results. Int J Legal Med 130(6):1623–1632

    Article  Google Scholar 

  22. Zelditch ML, Swiderski DL, Sheets HD (2012) Geometric morphometrics for biologists: a primer. Academic Press, Cambridge

    Google Scholar 

  23. Alemán I, Irurita J, Valencia AR, Martínez A, López-Lázaro S, Viciano J, Botella MC (2012) Brief communication: the Granada osteological collection of identified infants and young children. Am J Phys Anthropol 149(4):606–610

    Article  PubMed  Google Scholar 

  24. Rohlf FJ (2005) tpsDig, digitize landmarks and outlines, version 2.05. Department of Ecology and Evolution, State University of New York at Stony Brook, New York

    Google Scholar 

  25. Gonzalez PN, Bernal V, Perez SI (2011) Analysis of sexual dimorphism of craniofacial traits using geometric morphometric techniques. Int J Osteoarchaeol 21(1):82–91

    Article  Google Scholar 

  26. Fleiss JL, Levin B, Paik MC (2013) Statistical methods for rates and proportions. Wiley, Hoboken

    Google Scholar 

  27. Fleiss JL (2011) Design and analysis of clinical experiments, vol 73. John Wiley & Sons, Hoboken

    Google Scholar 

  28. Corp, I. B. M. (2013). IBM SPSS Statistics for Mac OSX, Version 22.0

  29. Adams DC, Rohlf FJ, Slice DE (2004) Geometric morphometrics: ten years of progress following the ‘revolution’. Ital J Zool 71(1):5–16

    Article  Google Scholar 

  30. Bookstein FL (1997) Morphometric tools for landmark data: geometry and biology. Cambridge University Press, Cambridge

    Google Scholar 

  31. Sheets HD (2003) IMP-integrated morphometrics package. Department of Physics, Canisius College, Buffalo, NY

    Google Scholar 

  32. Rohlf FJ (2007) tpsRelw version 1.45. Department of Ecology and Evolution. State University of New York, Stony Brook

    Google Scholar 

  33. Rohlf, F. J. (2009). tpsUtil version 1.44. New York State University at Stony Brook

  34. Webster M, Sheets HD (2010) A practical introduction to landmark-based geometric morphometrics. Quant Methods Paleobiol 16:168–188

    Google Scholar 

  35. Klingenberg CP (2008) Morpho J. Faculty of Life Sciences. University of Manchester, Manchester

    Google Scholar 

  36. Gonzalez PN, Bernal V, Perez SI (2009) Geometric morphometric approach to sex estimation of human pelvis. Forensic Sci Int 189(1):68–74

    Article  PubMed  Google Scholar 

  37. Slice DE (ed) (2006) Modern morphometrics in physical anthropology. Springer Science & Business Media, Berlin

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to D. Jose Antonio Muñoz, Managing Director, Maribel Martín, Service Coordinator, and all EMUCESA staff at the San Jose cemetery in Granada for their assistance; to the Magistrate Judge (Court of First Instance no. 5) responsible for the Registry Office of Granada; and to the anonymous reviewers for their suggestions and indications. This work belongs to the author’s PhD studies in Biomedicine (B11.56.1) at the University of Granada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique J. Estévez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Estévez, E.J., López-Lázaro, S., López-Morago, C. et al. Sex estimation of infants through geometric morphometric analysis of the ilium. Int J Legal Med 131, 1747–1756 (2017). https://doi.org/10.1007/s00414-017-1659-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-017-1659-6

Keywords

Navigation