Skip to main content

Advertisement

Log in

A proof of principal study on the use of direct PCR of semen and spermatozoa and development of a differential isolation protocol for use in cases of alleged sexual assault

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Sexual assault samples are some of the most common samples encountered in forensic analysis. These samples can require a significant time investment due to differential extraction processes. We report on the first record of successful direct amplification of semen for STR analysis. Neat seminal fluid, dilutions ranging from 1:5 to 1:160 and GEDNAP samples were successfully amplified using a direct method. A mild differential isolation technique to enrich spermatozoa was developed and successfully implemented to separate and directly amplify a mixture of semen and female epithelial cells. Aliquots of samples subjected to the differential isolation protocol were stained with Haemotoxylin and Eosin for sperm scoring. Samples stained after PCR showed a complete lack of intact spermatozoa demonstrating that the cells are lysed during the PCR process. This paper demonstrates the potential to incorporate direct PCR in cases of sexual assault to more rapidly obtain results and achieve a higher sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mercier B, Gaucher C, Feugeas O, Mazurier C (1990) Direct PCR from whole blood, without DNA extraction. Nucleic Acids Res 18:5908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ohhara M, Kurosu Y, Esumi M (1994) Direct PCR of whole blood and hair shafts by microwave treatment. Biotechniques 17: 726, 8-, 8.

  3. Panaccio M, Georgesz M, Hollywell C, Lew A (1993) Direct PCR from solid tissues without DNA extraction. Nucleic Acids Res 21:4656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Linacre A, Pekarek V, Swaran YC, Tobe SS (2010) Generation of DNA profiles from fabrics without DNA extraction. Forensic Sci Int 4:137–141

    Article  CAS  Google Scholar 

  5. Vallone PM, Hill CR, Butler JM (2008) Demonstration of rapid multiplex PCR amplification involving 16 genetic loci. Forensic Sci Int 3:42–45

    Article  CAS  Google Scholar 

  6. Butts ELR, Kline MC, Almeida JL, Vallone PM. (2010) DNA extraction efficiency: is it what you thought? Mid-Atlantic Association of Forensic Scientists. State College, Pennsylvania, USA

  7. Aki K, Kawazoe K, Izumi A, Tada T, Minakuchi K, Hosoi E (2014) Direct determination of ABO blood group genotypes from whole blood using PCR-amplification of specific alleles method. Am J BioSci 2:49–55

    CAS  Google Scholar 

  8. Park SJ, Kim JY, Yang YG, Lee SH (2008) Direct STR amplification from whole blood and blood or saliva spotted FTA® without DNA purification*. J Forensic Sci 53:335–341

    Article  CAS  PubMed  Google Scholar 

  9. Wang DY, Chang C-W, Oldroyd NJ, Hennessy LK (2009) Direct amplification of STRs from blood or buccal cell samples. Forensic Sci Int 2:113–114

    Google Scholar 

  10. Vandewoestyne M, Van Hoofstat D, Franssen A, Van Nieuwerburgh F, Deforce D (2013) Presence and potential of cell free DNA in different types of forensic samples. Forensic Sci Int 7:316–320

    Article  CAS  Google Scholar 

  11. Ottens R, Taylor D, Abarno D, Linacre A (2013) Successful direct amplification of nuclear markers from a single hair follicle. Forensic Sci Med Pathol 9:238–243

    Article  CAS  PubMed  Google Scholar 

  12. Tie J, Uchigasaki S (2014) Detection of short tandem repeat polymorphisms from human nails using direct polymerase chain reaction method. ELECTROPHORESIS: n/a-n/a. doi: 10.1002/elps.201400061

  13. Gausterer C, Stein C, Stimpfl T (2012) Application of direct PCR in a forensic case of yew poisoning. Int J Legal Med 126:315–319. doi:10.1007/s00414-011-0607-0

    Article  PubMed  Google Scholar 

  14. Amin AS, Hamdy MER, Ibrahim AK (2001) Detection of Brucella melitensis in semen using the polymerase chain reaction assay. Veterinary Microbiology 83: 37-44. doi: http://dx.doi.org/10.1016/S0378-1135(01)00401-1

  15. Van den Brule A, Hemrika D, Walboomers J et al (1993) Detection of Chlamydia trachomatis in semen of artificial insemination donors by the polymerase chain reaction. Fertil Steril 59:1098–1104

    Article  PubMed  Google Scholar 

  16. Yoshida K, Sekiguchi K, Mizuno N et al (1995) The modified method of two-step differential extraction of sperm and vaginal epithelial cell DNA from vaginal fluid mixed with semen. Forensic Science International 72: 25-33. doi: http://dx.doi.org/10.1016/0379-0738(94)01668-U

  17. Tobe SS, Dennany L, Vennemann M (2015) An assessment of the subjectivity of sperm scoring. Forensic Sci Int 251:83–86

    Article  PubMed  Google Scholar 

  18. Sivaram S, Bami HL (1971) Identification of seminal stains by the inhibition of acid phosphatase by L(+) tartrate. Journal of the Forensic Science Society 11: 187-94. doi: http://dx.doi.org/10.1016/S0015-7368(71)70652-5

  19. Sivaram S (1970) A modified azo-dye method for identification of seminal stains. J Forensic Sci 15:120

    CAS  PubMed  Google Scholar 

  20. Balk SP, Ko Y-J, Bubley GJ (2003) Biology of prostate-specific antigen. J Clin Oncol 21:383–391

    Article  CAS  PubMed  Google Scholar 

  21. Hochmeister MN, Budowle B, Rudin O et al (1999) Evaluation of prostate-specific antigen (PSA) membrane test assays for the forensic identification of seminal fluid. J Forensic Sci 44:1057–1060

    CAS  PubMed  Google Scholar 

  22. Hooft PJ, van de Voorde HP (1994) Interference of body products, food and products from daily life with the modified zinc test and the acid phosphatase test. Forensic Science International 66: 187-96. doi: http://dx.doi.org/10.1016/0379-0738(94)90343-3

  23. Vennemann M, Scott G, Curran L, Bittner F, Tobe S (2014) Sensitivity and specificity of presumptive tests for blood, saliva and semen. Forensic Sci Med Pathol 10:69–75. doi:10.1007/s12024-013-9515-6

    Article  CAS  PubMed  Google Scholar 

  24. Tirimanna ASL (1972) Acid phosphatases in the tea leaf. Experientia 28:633. doi:10.1007/BF01944944

    Article  CAS  PubMed  Google Scholar 

  25. Papotti M, Paties C, Peveri V, Moscuzza L, Bussolati G (1988) Immunocytochemical detection of prostate-specific antigen (PSA) in skin adnexal and breast tissues and tumors. Basic Appl Histochem 33:25–29

    Google Scholar 

  26. Yu H, Diamandis EP (1995) Prostate-specific antigen in milk of lactating women. Clin Chem 41:54–58

    CAS  PubMed  Google Scholar 

  27. Allard JE, Baird A, Davidson G et al (2007) A comparison of methods used in the UK and Ireland for the extraction and detection of semen on swabs and cloth samples. Science & Justice 47: 160-7. doi: http://dx.doi.org/10.1016/j.scijus.2007.09.010

  28. Nittis M (2013) Evidence collection in cases of sexual assault. In Beran RG (Ed) Legal and forensic medicine. Springer, New York, p. 1335-58

  29. Cooper TG, Noonan E, von Eckardstein S et al (2010) World Health Organization reference values for human semen characteristics. Hum Reprod Update 16:231–245. doi:10.1093/humupd/dmp048

    Article  PubMed  Google Scholar 

  30. Bellabarba GAD, Tortolero I, Villarroel V, Molina CZ, Bellabarba C, Velazquez E (2000) Nonsperm cells in human semen and their relationship with semen parameters. Syst Biol Reprod Med 45:131–136. doi:10.1080/01485010050193896

    Google Scholar 

  31. Akane A, Matsubara K, Nakamura H, Takahashi S, Kimura K (1994) Identification of the heme compound copurified with deoxyribonucleic acid (DNA) from bloodstains, a major inhibitor of polymerase chain reaction (PCR) amplification. J Forensic Sci 39:362–372

    Article  CAS  PubMed  Google Scholar 

  32. Al-Soud WA, Rådström P (2001) Purification and characterization of PCR-inhibitory components in blood cells. J Clin Microbiol 39:485–493. doi:10.1128/jcm.39.2.485-493.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tsai YL, Olson BH (1992) Rapid method for separation of bacterial DNA from humic substances in sediments for polymerase chain reaction. Appl Environ Microbiol 58:2292–2295

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Watson RJ, Blackwell B (2000) Purification and characterization of a common soil component which inhibits the polymerase chain reaction. Can J Microbiol 46:633–642. doi:10.1139/w00-043

    Article  CAS  PubMed  Google Scholar 

  35. Demeke T, Adams R (1992) The effects of plant polysaccharides and buffer additives on PCR. Biotechniques 12:332–334

    CAS  PubMed  Google Scholar 

  36. Khan G, Kangro HO, Coates PJ, Heath RB (1991) Inhibitory effects of urine on the polymerase chain reaction for cytomegalovirus DNA. J Clin Pathol 44:360–365. doi:10.1136/jcp.44.5.360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Powell HA, Gooding CM, Garrett SD, Lund BM, McKee RA (1994) Proteinase inhibition of the detection of Listeria monocytogenes in milk using the polymerase chain reaction. Lett Appl Microbiol 18:59–61. doi:10.1111/j.1472-765X.1994.tb00802.x

    Article  CAS  Google Scholar 

  38. Shutler GG, Gagnon P, Verret G et al (1999) Removal of a PCR inhibitor and resolution of DNA STR types in mixed human-canine stains from a five year old case. J Forensic Sci 44:623–626

    Article  CAS  PubMed  Google Scholar 

  39. Al-Soud WA, Rådström P (1998) Capacity of nine thermostable DNA polymerases to mediate DNA amplification in the presence of PCR-inhibiting samples. Appl Environ Microbiol 64:3748–3753

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hedman J, Nordgaard A, Rasmusson B, Ansell R, Rådström P (2009) Improved forensic DNA analysis through the use of alternative DNA polymerases and statistical modeling of DNA profiles. Biotechniques 47:951–958

    Article  CAS  PubMed  Google Scholar 

  41. Hedman J, Ansell R, Nordgaard A (2010) A ranking index for quality assessment of forensic DNA profiles. BMC Res Notes 3:290

    Article  PubMed  PubMed Central  Google Scholar 

  42. Di Martino D, Giuffre G, Staiti N, Simone A, Le Donne M, Saravo L (2004) Single sperm cell isolation by laser microdissection. Forensic Sci Int 146:S151–S153

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

YCS was funded through the Government of Malaysia. We would also like to thank Lisa Dierig and Marianne Schürenkamp for the excellent technical assistance and Prof. Peter Schmidt (Münster) for the help with microscopic images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanan S. Tobe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tobe, S.S., Swaran, Y.C., Dennany, L. et al. A proof of principal study on the use of direct PCR of semen and spermatozoa and development of a differential isolation protocol for use in cases of alleged sexual assault. Int J Legal Med 131, 87–94 (2017). https://doi.org/10.1007/s00414-016-1461-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-016-1461-x

Keywords

Navigation