Skip to main content
Log in

Models and implementation for relationship problems with dropout

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Allelic dropout in relationship problems may commonly appear in areas such as disaster victim identification and the identification of missing persons. If dropout is not accounted for, the results may be incorrect interpretation of profiles, loss of valuable information and biased results. In this paper, we explore different models for dropout in kinship cases and present an efficient implementation for one of the models. The implementation allows for dropout to be handled simultaneously with phenomena like silent alleles and mutations that may also cause discordances in relationship data, in addition to subpopulation correction. The implemented dropout model is freely available in the new version of the Familias software. The concepts and methods are illustrated on real and simulated data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Anderung C, Persson P, Bouwman A, Elburg R, Goethertroem A (2008) Fishing for ancient DNA. Forensic Sci Int Genetics 2(2):104–107. doi:10.1016/j.fsigen.2007.09.004

    Article  Google Scholar 

  2. Balding DJ (2013) Evaluation of mixed-source, low-template DNA profiles in forensic science , Proceedings of the National Academy of Sciences of the United States of America, vol 110(30), pp 12241–12246, DOI http://10.1073/pnas.1219739110

  3. Brenner C, Weir B (2003) Issues and strategies in the DNA identification of world trade center victims. Theor Popul Biol 63(3):173–178. doi:10.1016/S0040-5809(03)00008-X

    Article  Google Scholar 

  4. Buckleton J, Triggs C (2006) Dealing with allelic dropout when reporting the evidential value in DNA relatedness analysis. Forensic Sci Int Genetics 160(2-3):134–139. doi:10.1016/j.forsciint.2005.08.023

    Article  Google Scholar 

  5. Curran J, Gill P, Bill M (2005) Interpretation of repeat measurement DNA evidence allowing for multiple contributors and population substructure. Forensic Science International 148(1):47–53. doi:10.1016/j.forsciint.2004.04.077

    Article  Google Scholar 

  6. Egeland T, Mostad P, Mevag B, Stenersen M (2000) Beyond traditional paternity and identification cases. Selecting the most probable pedigree. Forensic Sci Int Genetics 110(1):47–59. doi:10.1016/S0379-0738(00)00147-X

    Article  Google Scholar 

  7. Gill P, Gusmão L, Haned H, Mayr W, Morling N, Parson W, Prieto L, Prinz M, Schneider H, Schneider P, Weir B (2012) DNA commission of the International Society of Forensic Genetics: Recommendations on the evaluation of STR typing results that may include drop-out and/or drop-in using probabilistic methods. Forensic Sci Int Genetics 6(6):679–688. doi:10.1016/j.fsigen.2012.06.002

    Article  Google Scholar 

  8. Haned H (2011) Forensim: An open-source initiative for the evaluation of statistical methods in forensic genetics. Forensic Sci Int Genetics 5(4):265–268. doi:10.1016/j.fsigen.2010.03.017.

    Article  Google Scholar 

  9. Kling D, Tilmar A, Egeland T (2014) Familias 3-extensions and new funcionality. Forensic Sci Int Genetics. doi:10.1016/j.fsigen.2014.07.004

  10. Mitchell AA, Tamariz J, O’Connell K, Ducasse N, Prinz M, Caragine T (2011) Likelihood ratio statistics for DNA mixtures allowing for drop-out and drop-in. Forensic Sci Int Genetics Supplement Series 3(1):240–241. doi:10.1016/j.fsigss.2011.08.119

    Google Scholar 

  11. Mulero JJ, Chang CW, Lagace RE, Wang DY, Bas JL, McMahon TP, Hennessy LK (2008) Development and validation of the AmpFlSTR (R) MiniFiler (TM) PCR amplification kit: A MiniSTR multiplex for the analysis of degraded and/or PCR inhibited DNA. J Forensic Sci 53(4):838–852. doi:10.1111/j.1556-4029.2008.00760.x

  12. Rohland N, Hofreiter M (2007) Comparison and optimization of ancient DNA extraction. Biotechniques 42(3):343–352. doi:10.2144/000112383

    Article  Google Scholar 

  13. Slooten KJ (2011) Validation of DNA-based identification software by computation of pedigree likelihood ratios. Forensic Sci Int: Genetics 5(4):308–315. doi:10.1016/j.fsigen.2010.06.005

    Article  Google Scholar 

  14. Sprecher CJ, McLaren RS, Rabbach D, Krenke B, Ensenberger MG, Fulmer PM, Downey L, McCombs E, Storts DR (2009) Powerplex®;ESX and ESI systems: a suite of new STR systems designed to meet the changing needs of the DNA-typing community. Forensic Sci Int: Genetics Supplement Series 2(1):2–4. doi:10.1016/j.fsigss.2009.08.058

    Google Scholar 

  15. Tvedebrink T, Eriksen PS, Mogensen HS, Morling N (2009) Estimating the probability of allelic drop-out of STR alleles in forensic genetics. Forensic Sci Int Genetics 3(4):222–226. doi:10.1016/j.fsigen.2009.02.002

    Article  Google Scholar 

  16. Tvedebrink T, Eriksen PS, Asplund M, Mogensen HS, Morling N (2012) Allelic drop-out probabilities estimated by logistic regression—further considerations and practical implementation. Forensic Sci Int Genetics 6(2):263–267. doi:10.1016/j.fsigen.2011.06.004.

    Article  Google Scholar 

  17. van Dongen CB, Slooten K, Burgers W, Wiegerinck W (2009) Bayesian networks for victim identification on the basis of DNA profiles. Forensic Sci Int Genetics Supplement Series 2(1):466–468. doi:10.1016/j.fsigss.2009.08.024.

    Article  Google Scholar 

  18. van Dongen CB, Slooten K, Slagter M, Burgers W, Wiegerinck W (2011) Bonaparte: application of new software for missing persons program. Forensic Sci Int: Genetics Supplement Series 3(1):119–120. doi:10.1016/j.fsigss.2011.08.059.

    Google Scholar 

  19. Weir BS, Anderson AD, Hepler AB (2006) Genetic relatedness analysis: modern data and new challenges. Nat Rev Genet 7(10):771–780. doi:10.1038/nrg1960

    Article  Google Scholar 

Download references

Acknowledgments

GD and TE have received funding support from the European Union Seventh Framework Programme, EUROFORGEN-NoE (FP7/2007-2013) under grant agreement no. 285487.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guro Dørum.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 150 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dørum, G., Kling, D., Baeza-Richer, C. et al. Models and implementation for relationship problems with dropout. Int J Legal Med 129, 411–423 (2015). https://doi.org/10.1007/s00414-014-1046-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-014-1046-5

Keywords

Navigation