Skip to main content

Advertisement

Log in

Histomorphometric estimation of age in paraffin-embedded ribs: a feasibility study

  • ORIGINAL ARTICLE
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Estimation of age at death from human bones in legal medicine or in anthropology and archaeology is hampered by controversial results from the various macroscopic and histological techniques. This study attempted an estimation of age at death by histomorphometric analysis, from the fourth left rib adjacent to the costochondral joint in 80 forensic cases. Use of the picrosirius dye provided a reliable staining of the decalcified paraffin-embedded ribs. The total bone cortical area, the major and minor diameter as well as the area of the Haversian canals, the osteon areas of intact and remodelled secondary osteons, the area of non-Haversian canals were evaluated by means of image analysis, and derived parameters were calculated on both the internal and external sides of the rib. Most of the variables exhibited consistency between three different observers. Noteworthy, morphometric measurements in the internal cortex of the rib showed less variability than in the external cortex. Finally, discriminant statistical analysis from the 80 cases in this study indicated that the osteon population density was virtually sufficient to significantly discriminate between three groups of age: 20-39 (adulthood), 40-59 (middle age) and a group superior to 60. A subsequent blind evaluation of ten new subjects satisfactorily classified seven subjects out of ten within the three age groups. These results make feasible a larger study aimed at characterization of the practical relationships between bone tissue histomorphometry in ribs and chronological age in forensic cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gustafson G (1950) Age determination on teeth. J Am Dent Assoc 41(1):45–54

    PubMed  CAS  Google Scholar 

  2. Lamendin H, Baccino E, Humbert JF, Tavernier JC, Nossintchouk RM, Zerilli A (1992) A simple technique for age estimation in adult corpses: the two criteria dental method. J Forensic Sci 37(5):1373–1379

    PubMed  CAS  Google Scholar 

  3. Prince DA, Ubelaker DH (2002) Application of Lamendin’s adult dental aging technique to a diverse skeletal sample. Forensic Sci 47(1):107–116

    Google Scholar 

  4. Perizonius WRK (1984) Closing and non-closing sutures in 256 crania of known age and sex from Amsterdam (AD 1883-1909). J Hum Evol 13:201–216

    Article  Google Scholar 

  5. Todd TW, Lyon DW (1924) Endocranial suture closure. Part I: adult males of white stock. Am J Phys Anthropol 7:325–384

    Article  Google Scholar 

  6. Todd TW, Lyon DW (1925) Ectocranial suture closure. Part II: adult males of white stock. Am J Phys Anthropol 8:23–43

    Article  Google Scholar 

  7. Brooks S, Suchey JM (1990) Skeletal age determination based on the os pubis: a comparison of the Acsadi-Nemeskeri and Suchey-Brooks methods. Hum Evol 5:227–238

    Article  Google Scholar 

  8. Iscan MY, Loth SR, Wrigh RK (1984) Age estimation from the rib by phase analysis: white males. J Forensic Sci 29(4):1094–1104

    PubMed  CAS  Google Scholar 

  9. Krogman WM (1986) The human skeleton in forensic medicine. Charles C Thomas, Springfield

    Google Scholar 

  10. Ahlquist J, Damsten O (1969) A modification of Kerley’s method for the microscopic determination of age in human bone. J Forensic Sci 14:205–212

    Google Scholar 

  11. Bouvier M, Uberlaker DH (1977) A comparison of two methods for the microscopic determination of age at death. Am J Phys Anthropol 46:391–394

    Article  PubMed  CAS  Google Scholar 

  12. Chan AHW, Crowder CM, Rogers TL (2007) Variation in cortical bone histology within the human femur and its impact on estimating age at death. Am J Phys Anthropol 132:80–88

    Article  PubMed  Google Scholar 

  13. Cho H, Stout SD, Madsen RW, Streeter MA (2002) Population-specific histological age-estimating method: a model for known African-American and European-American skeletal remains. J Forensic Sci 47(1):12–18

    PubMed  Google Scholar 

  14. Crowder C, Rosella L (2007) Assessment of intra- and intercostal variation in rib histomorphometry: its impact on evidentiary examination. J Forensic Sci 52(2):271–276

    Article  PubMed  Google Scholar 

  15. Ericksen MF (1991) Histologic estimation of age at death using the anterior cortex of the femur. Am J Phys Anthropol 84(2):171–179

    PubMed  CAS  Google Scholar 

  16. Ericksen MF, Stix AI (1991) Histological examination of age of the first african baptist church adults. Am J Phys Anthropol 85:247–252

    Article  PubMed  CAS  Google Scholar 

  17. Kerley ER (1965) The microscopic determination of age in human bone. Am J Phys Anthropol 23:149–163

    Article  PubMed  CAS  Google Scholar 

  18. Kerley ER, Ubelaker DH (1978) Revisions in the microscopic method of estimating age at death in human bone. Am J Phys Anthropol 49:545–546

    Article  PubMed  CAS  Google Scholar 

  19. Kim YS, Kim DI, Park DK, Lee JH, Chung NE, Lee WT, Han SH (2007) Assessment of histomorphological features of the sternal end of the fourth rib for age estimation in Koreans. J Forensic Sci 52(6):1237–1242

    Article  PubMed  Google Scholar 

  20. Maat GJR, Maes A, Aarents MJ, Nagelkerke NJD (2006) Histological age prediction from the femur in a contemporary dutch sample: the decrease of non-remodeled bone in the anterior cortex. J Forensic Sci 51(2):230–237

    Article  PubMed  Google Scholar 

  21. Mulhern DM (2000) Rib remodelling dynamics in a skeletal population from Kulubnarti, Nubia. Am J Phys Anthropol 111:519–530

    Article  PubMed  CAS  Google Scholar 

  22. Paine RR, Brenton BP (2006) Dietary health does affect histological age assessment: an evaluation of the Stout and Paine (1992) age estimation equation using secondary osteons from the rib. J Forensic Sci 51(3):489–492

    Article  PubMed  Google Scholar 

  23. Stout SD (1986) The use of bone histomorphometry in skeletal identification: the case of Francisco Pizarro. J Forensic Sci 31(1):296–300

    PubMed  CAS  Google Scholar 

  24. Stout SD (1988) The use of histomorphology to estimate age. J Forensic Sci 33(1):121–125

    PubMed  CAS  Google Scholar 

  25. Stout SD, Dietze WH, Iscan MY, Loth SR (1994) Estimation of age at death using cortical histomorphometry of the sternal end of the fourth rib. J Forensic Sci 39(3):778–784

    PubMed  CAS  Google Scholar 

  26. Stout SD, Gehlert SJ (1980) The relative accuracy and reliability of histological aging methods. Forensic Sci Int 15:181–190

    Article  PubMed  CAS  Google Scholar 

  27. Stout SD, Paine RR (1992) Brief communication: histological age estimation using rib and clavicle. Am J Phys Anthropol 87:111–115

    Article  PubMed  CAS  Google Scholar 

  28. Stout SD, Porro MA, Perotti B (1996) Brief communication: a test and correction for the clavicle method of Stout and Paine for histological age estimation of skeletal remains. Am J Phys Anthropol 100:139–142

    Article  PubMed  CAS  Google Scholar 

  29. Thompson DD (1979) The core technique in the determination of age at death in skeletons. J Forensic Sci 24(4):902–915

    PubMed  CAS  Google Scholar 

  30. Thompson DD (1981) Microscopic determination of age at death in an autopsy series. J Forensic Sci 26(3):470–475

    PubMed  CAS  Google Scholar 

  31. Thompson DD, Calvin CA (1983) Estimation of age at death by tibial osteon remodeling in an autopsy series. Forensic Sci Int 22:203–211

    Article  PubMed  CAS  Google Scholar 

  32. Watanabe Y, Konishi M, Shimada M, Ohara H, Iwamoto S (1998) Estimation of age from the femur of Japanese cadavers. Forensic Sci Int 98:55–65

    Article  PubMed  CAS  Google Scholar 

  33. Yoshino M, Imaizumi K, Miyasaka S, Seta S (1994) Histological estimation of age at death using microradiographs of humeral compact bone. Forensic Sci Int 64:191–198

    Article  PubMed  CAS  Google Scholar 

  34. Helfman PM, Bada JL (1976) Aspartic acid racemization in dentine as a measure of ageing. Nature 262:279–281

    Article  PubMed  CAS  Google Scholar 

  35. Ohtani S, Yamamoto K (1987) Age estimation using the racemization of aspartic acid on human dentin. Nihon Hiogaku Zasshi 41(3):181–190

    CAS  Google Scholar 

  36. Ritz S, Schütz HW, Peper C (1993) Postmortem estimation of age at death based on aspartic acid racemization in dentin: its applicability for root dentin. Int J Legal Med 105:289–293

    Article  PubMed  CAS  Google Scholar 

  37. Ohtani S, Ito R, Arany S, Yamamoto T (2005) Racemization in enamel among different types of teeth from the same individual. Int J Legal Med 119:66–69

    Article  PubMed  Google Scholar 

  38. Pfeiffer H, Mörnstad H, Teivens A (1995) Estimation of chronological age using the aspartic acid racemization method. I. On human rib cartilage. Int J Legal Med 108:19–23

    Article  PubMed  CAS  Google Scholar 

  39. Ritz-Timme S, Cattaneo C, Collins MJ, Waite ER, Schütz HW, Kaatsch HJ, Borrman HIM (2000) Age estimation: the state of the art in relation to the specific demands of forensic practice. Int J Legal Med 113:129–136

    Article  PubMed  CAS  Google Scholar 

  40. Frost HM (1963) Bone remodelling dynamics. Charles C Thomas, Springfield

    Google Scholar 

  41. Johansson CB, Morberg P (1995) Importance of ground section thickness for reliable histomorphometrical results. Biomaterials 16(2):91–95

    Article  PubMed  CAS  Google Scholar 

  42. Pfeiffer S, Lazenby R, Chiang J (1995) Brief communication: cortical remodeling data are affected by sampling location. Am J Phys Anthropol 96(1):89–92

    Article  PubMed  CAS  Google Scholar 

  43. Junqueira LC, Bignolas G, Brentani RR (1979) Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochem J 11(4):447–455

    Article  PubMed  CAS  Google Scholar 

  44. Puchtler H, Waldrop FS, Valentine LS (1973) Polarization microscopic studies of connective tissue stained with picro-sirius red F3BA. Beitr Pathol Anat 150:174–187

    CAS  Google Scholar 

  45. Ascenzi A, Bonucci E (1970) The mechanical properties of the osteon in relation to its structural organisation. In: Balazs EA (ed) Chemistry and molecular biology of the intercellular matrix. New York, Academic Press

    Google Scholar 

  46. Ascenzi A, Bonucci E (1976) Relationship between ultrastructure and “pin test” in osteons. Clin Orth Rel Res 121:275–294

    Google Scholar 

  47. Bromage TG, Goldman HM, Mc Farlin SC, Warshaw J, Boyde A, Riggs CM (2003) Circularly polarized light standards for investigations of collagen fiber orientation in bone. Anat Rec B New Anat 274(1):157–168

    Article  PubMed  Google Scholar 

  48. Johnson LR (2003) Essential medical physiology. Academic, London, pp 681–682

    Google Scholar 

  49. Young B (2006) Wheater’s functional histology: a text and colour atlas, 5th edn. Churchill Livingstone, Edinburgh, pp 189–201

    Google Scholar 

  50. Dziedzic-Goclawska A, Rozycka M, Czyba JC, Moutier R, Lenczowski S, Ostrowski K (1982) Polarizing microscopy of picrosirius stained bone sections as a method for analysis of spatial distribution of collagen fibers by optical diffractometry. Basic Appl Histochem 26(4):227–239

    PubMed  CAS  Google Scholar 

  51. Romeder JM (1973) Méthodes et programmes d’analyse discriminante. Dunod, Paris

    Google Scholar 

  52. Venables WN, Ripley BD (2002) Modern applied statistics with S. Springer, New York

    Google Scholar 

  53. Lynnerup N, Thomsen JL, Frohlich B (1998) Intra- and inter-observer variation in histological criteria used in age-at-death determination based on femoral cortical bone. Forensic Sci Int 91:219–230

    Article  PubMed  CAS  Google Scholar 

  54. Maat GJR, van den Bos RPM, Aarents MJ (2001) Manual preparation of ground sections for the microscopy of natural bone tissue. Update and modification of Frost’s ‘‘rapid manual method’’. Int J Osteoarchaeol 11:366–374

    Article  Google Scholar 

  55. Telmon N, Allery JP, Blanc A, Gainza D, Rougé D (2004) Comparaison de méthodes de détermination histologique et scopique de l’âge à partir de l’extrémité sternale de la 4ème côte. Antropo 7:203–209

    Google Scholar 

  56. Iwaniec TU, Crenshaw TD, Schoninger MJ, Stout SD, Ericksen MF (1998) Methods for improving the efficiency of estimating total osteon density in the human anterior mid-diaphyseal femur. Am J Phys Anthropol 107:13–24

    Article  PubMed  CAS  Google Scholar 

  57. Schmitt A (2002) Estimation de l’âge au décès des sujets adultes à partir du squelette: des raisons d’espérer. Bull et Mém de la Société d’Anthropologie de Paris, ns, t 14(1–2):51–73

    Google Scholar 

  58. Frost HM (1985) The “new bone”: some anthropological potentials. Yr Physical Anthropol 28:211–226

    Article  Google Scholar 

  59. Epker BN, Frost HM (1965) The direction of transverse drift of actively forming osteons in human rib cortex. J Bone Joint Surg Am 47A:1211–1215

    Google Scholar 

  60. Cormier J (2003) Microstructural and mechanical properties of human ribs. Thesis, University of Virginia

  61. Pfeiffer S (1998) Variability in osteon size in recent human populations. Am J Phys Anthropol 106(2):219–227

    Article  PubMed  CAS  Google Scholar 

  62. Lynnerup N, Frohlich B, Thomsen JL (2006) Assessment of age at death by microscopy: unbiased quantification of secondary osteons in femoral cross-sections. Forensic Sci Int 159S:S100–S103

    Article  Google Scholar 

  63. Stout SD, Stanley SC (1991) Percent osteonal bone versus osteon counts: the variable of choice for estimating age at death. Am J Phys Anthropol 86:515–519

    Article  PubMed  CAS  Google Scholar 

  64. Rösing FW, Kvaal SI (1997) Dental age in adults. A review of estimation methods. In: Alt KW, Rösing FW, Teschler-Nicola M (eds) Dental anthropology. Fundamentals, limits and prospects. Springer, Wien, pp 443–468

    Google Scholar 

  65. Giles E, Klepinger LL (1988) Confidence intervals for estimates based on linear regression in forensic anthropology. J Forensic Sci 33(5):1218–1222

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Cannet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cannet, C., Baraybar, J.P., Kolopp, M. et al. Histomorphometric estimation of age in paraffin-embedded ribs: a feasibility study. Int J Legal Med 125, 493–502 (2011). https://doi.org/10.1007/s00414-010-0444-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-010-0444-6

Keywords

Navigation