Skip to main content

Advertisement

Log in

Release of metals from osteosynthesis implants as a method for identification: post-autopsy histopathological and ultrastructural forensic study

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Metal structures—especially of stainless steel, titanium and their alloys (biomaterials)—are widely used in orthopaedic practice and the subject of constant study in bioengineering and preventive medicine. This study presents the first experience of forensic research into the presence of permanent tissue variations around metal implants in various bone structures for the purpose of identification, with particular reference to skeletal remains or severely decomposed corpses in the absence of other identifying elements. The evaluation was conducted on 12 corpses who had undergone osteosynthesis intra-vitam, whose implants were still in place or had been removed, in comparison with five controls who had never undergone osteosynthesis. Bone fragments taken during autopsy were subjected to histopathological and scanning electron microscope–energy dispersive electroscopy examination in order to reveal and characterise any metal particles originating from osteosynthesis. The study enabled the discovery of intra-bone metal particles in tissues treated by osteosynthesis even in bone areas where the implants had been removed and even where there were no longer any radiological signs of their application. These results are therefore of considerable forensic importance, especially in the area of identification, providing a valid means of recognition beyond that of the well-established use of in situ metal implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Black J (1988) Does corrosion matter? J Bone Joint Surg 70-B:517–520

    Google Scholar 

  2. Zaffe D, Bertoldi C, Consolo U (2004) Accumulation of aluminium in lamellar bone after implantation of titanium plates, Ti-6Al-4V screws, hydroxyapatite granules. Biomaterials 25(17):3837–3844

    Article  CAS  PubMed  Google Scholar 

  3. Dos Santos TI, De Oliveira PT, Rosa AL et al (2007) Histological and histomorphometric analysis of the bone–screw interface in the mandibular body after using a 2.0-mm miniplate system: an experimental study in dogs. J Oral Maxillofac Surg 65(11):2169–2175

    Article  PubMed  Google Scholar 

  4. Franchi M, Bacchelli B, Martini D et al (2004) A. Early detachment of titanium particles from various different surfaces of endosseous dental implants. Biomaterials 25(12):2239–2246

    Article  CAS  PubMed  Google Scholar 

  5. Franchi M, Orsini E, Martini D et al (2007) Destination of titanium particles detached from titanium plasma sprayed implants. Micron 38(6):618–625

    Article  CAS  PubMed  Google Scholar 

  6. Martini D, Fini M, Franchi M et al (2003) Detachment of titanium and fluorohydroxyapatite particles in unloaded endosseous implants. Biomaterials 24(7):1309–1316

    Article  CAS  PubMed  Google Scholar 

  7. Matthew R, Frame JW (1998) Ultrastructural analysis of metal particles released from stainless steel and titanium miniplate components in an animal model. J Oral Maxillofac Surg 56(1):45–50

    Article  CAS  PubMed  Google Scholar 

  8. Moberg LE, Nordenram A, Kjellman O (1989) Metal release from plates used in jaw fracture treatment. A pilot study. J Oral Maxillofac Surg 18(5):311–314

    Article  CAS  Google Scholar 

  9. Nazzal A, Lozano-Calderón S, Jupiter JB et al (2006) A histologic analysis of the effects of stainless steel and titanium implants adjacent to tendons: an experimental rabbit study. J Hand Surg 31A(7):1123–1130

    Google Scholar 

  10. Gores RJ, Hayes CK, Unni KK (1989) Postmortem examination of six maxillary core-vent implants: report of a case. J Oral Maxillofac Surg 47(3):302–306

    Article  CAS  PubMed  Google Scholar 

  11. Hirai H, Okumura A, Goto M et al (2001) Histologic study of the bone adjacent to titanium bone screws used for mandibular fracture treatment. J Oral Maxillofac Surg 59(5):531–537

    Article  CAS  PubMed  Google Scholar 

  12. Rohrer MD, Bulard RA, Patterson MKJR (1995) Maxillary and mandibular titanium implants 1 year after surgery: histologic examination in a cadaver. Int J Oral Maxillofac Implants 10(4):466–473

    CAS  PubMed  Google Scholar 

  13. Torgersen S, Gjerdet NR, Erichsen ES et al (1995) Metal particles and tissue changes adjacent to miniplates. A retrieval study. Acta Odontol Scand 53(2):65–71

    Article  CAS  PubMed  Google Scholar 

  14. Bennett JL, Benedix DC (1999) Positive identification of cremains recovered from an automobile based on the presence of an internal fixation device. J Forensic Sci 44(6):1296–1298

    CAS  PubMed  Google Scholar 

  15. Blau S, Robertson S, Johnstone M (2008) Disaster victim identification: new applications for postmortem computed tomography. J Forensic Sci 53(4):956–961

    Article  PubMed  Google Scholar 

  16. Kahana T, Ravioli JA, Urroz CL et al (1997) Radiographic identification of fragmentary human remains from a mass disaster. Am J Forensic Med Pathol 18(1):40–44

    Article  CAS  PubMed  Google Scholar 

  17. Simpson EK, James RA, Eitzen DA et al (2007) Role of orthopedic implants and bone morphology in the identification of human remains. J Forensic Sci 52(2):442–448

    Article  PubMed  Google Scholar 

  18. Bush MA, Bush PJ, Miller RG (2006) Detection and classification of composite resins in incinerated teeth for forensic purposes. J Forensic Sci 51(3):636–642

    Article  CAS  PubMed  Google Scholar 

  19. Bush MA, Miller RG, Norrlander AL et al (2008) Analytical survey of restorative resins by SEM/EDS and XRF: database for forensic purposes. J Forensic Sci 53(2):419–425

    Article  CAS  PubMed  Google Scholar 

  20. Acero J, Calderon J, Salmeron JI et al (1999) The behaviour of titanium as a biomaterial: microscopy study of plates and surrounding tissues in facial osteosynthesis. J Craniomaxillofac Surg 27(2):117–123

    CAS  PubMed  Google Scholar 

  21. Jonas L, Fulda G, Radeck C et al (2001) Biodegradation of titanium implants after long-time insertion used for the treatment of fractured upper and lower jaws through osteosynthesis: element analysis by electron microscopy and EDX or EELS. Ultrastruct Pathol 25(5):375–383

    Article  CAS  PubMed  Google Scholar 

  22. Bouakaze C, Keyser C, Crubézy E, Montagnon D, Ludes B (2009) Pigment phenotype and biogeographical ancestry from ancient skeletal remains: inferences from multiplexed autosomal SNP analysis. Int J Legal Med 123:315–325

    Article  PubMed  Google Scholar 

  23. Benazzi S, Stansfield E, Dilani C, Gruppioni G (2009) Geometric morphometric methods for three-dimensional virtual reconstruction of a fragmented cranium: the case of Angelo Poliziano. Int J Legal Med 123:333–344

    Article  CAS  PubMed  Google Scholar 

  24. De Angelis D, Sala R, Cantatore A, Grandi M, Cattaneo C (2009) A new computer-assisted technique to aid personal identification. Int J Legal Med 123:351–356

    Article  PubMed  Google Scholar 

  25. Molina DK, Martinez M, Garcia J, DiMaio VJ (2007) Gunshot residue testing in suicides: part I: analysis by scanning electron microscopy with energy-dispersive X-ray. Am J Forensic Med Pathol 28:187–190

    Article  PubMed  Google Scholar 

  26. Pye K, Croft D (2007) Forensic analysis of soil and sediment traces by scanning electron microscopy and energy-dispersive X-ray analysis: an experimental investigation. Forensic Sci Int 165:52–63

    Article  CAS  PubMed  Google Scholar 

  27. Neri M, Turillazzi E, Riezzo I, Fineschi V (2007) The determination of firing distance applying a microscopic quantitative method and confocal laser scanning microscopy for detection of gunshot residue particles. Int J Legal Med 121:287–292

    Article  PubMed  Google Scholar 

  28. Fairgrieve SI (1994) SEM analysis of incinerated teeth as an aid to positive identification. J Forensic Sci 39:557–565

    CAS  PubMed  Google Scholar 

  29. Fassina A, Corradin M, Murer B, Furlan C, Guolo A, Ventura L, Montisci M (2009) Detection of silica particles in lung tissue by environmental scanning electron microscopy. Inhal Toxicol 21:133–140

    Article  CAS  PubMed  Google Scholar 

  30. Viel G, Cecchetto G, Fabbri LD, Furlan C, Ferrara SD, Mentisci M (2009) Forensic application of ESEM and XRF-EDS techniques to a fatal case of sodium phosphate enema intoxication. Int J Legal Med 123:345–350

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Mr. Agostino Rizzi, C.T.E.R. of the Istituto per la Dinamica dei Processi Ambientali (IDPA), CNR di Milano, working at the “Ardito Desio” Earth Sciences Department at the University of Milan, for his cooperation and tireless help with the SEM/EDS analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Zoja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palazzo, E., Andreola, S., Battistini, A. et al. Release of metals from osteosynthesis implants as a method for identification: post-autopsy histopathological and ultrastructural forensic study. Int J Legal Med 125, 21–26 (2011). https://doi.org/10.1007/s00414-009-0394-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-009-0394-z

Keywords

Navigation