Skip to main content
Log in

Various modes of HP1a interactions with the euchromatic chromosome arms in Drosophila ovarian somatic cells

  • Original Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Heterochromatin protein 1a (HP1a) is a well-known component of pericentromeric and telomeric heterochromatin in Drosophila. However, its role and the mechanisms of its binding in the chromosome arms (ChAs) remain largely unclear. Here, we identified HP1a-interacting domains in the somatic cells of Drosophila ovaries using a DamID-seq approach and compared them with insertion sites of transposable elements (TEs) revealed by genome sequencing. Although HP1a domains cover only 13% of ChAs, they non-randomly associate with 42% of TE insertions. Furthermore, HP1a on average propagates at 2-kb distances from the TE insertions. These data confirm the role of TEs in formation of HP1a islands in ChAs. However, only 18% of HP1a domains have adjacent TEs, indicating the existence of other mechanisms of HP1a domain formation besides spreading from TEs. In particular, many TE-independent HP1a domains correspond to the regions attached to the nuclear pore complexes (NPCs) or contain active gene promoters. However, HP1a occupancy on the promoters does not significantly influence expression of corresponding genes. At the same time, the steady-state transcript level of many genes located outside of HP1a domains was altered upon HP1a knockdown in the somatic cells of ovaries, thus pointing to the strong indirect effect of HP1a depletion. Collectively, our results support an existence of at least three different mechanisms of HP1a domain emergence in ChAs: spreading from TE insertions, transient interactions with the chromatin located near NPCs, and targeting to the promoters of moderately expressed genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Raw and processed HP1a-DamID-seq data in ovaries and RNA-seq data in ovaries upon HP1a-SKD were deposited in the NCBI Gene Expression Omnibus (GEO) under the accession number GSE132756. Sequencing data for Drosophila genome were deposited in the NCBI SRA Database (SRR9305781). All other data generated during the current study are included in the article and its supplementary information files, or available from the corresponding authors on reasonable request.

Abbreviations

ChA:

Chromosome arm

H3K9me2/3:

Histone H3 di/tri methylated at lysine 9

HMM:

Hidden Markov model

HP1:

Heterochromatin protein 1

LTR:

Long terminal repeat

M-W:

Mann-Whitney

NPC:

Nuclear pore complex

OSCs:

Ovarian somatic cells

Pc:

Polycomb

Pol II:

RNA-polymerase II

PRE:

Polycomb response element

SKD:

Somatic knockdown

TE:

Transposable element

TSS:

Transcription start site

References

  • Aasland R, Stewart AF (1995) The chromo shadow domain, a second chromo domain in heterochromatin-binding protein 1, HP1. Nucleic Acids Res 23:3168–3173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anders S, Pyl PT, Huber W (2015) HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169

    CAS  PubMed  Google Scholar 

  • Ayyanathan K, Lechner MS, Bell P, Maul GG, Schultz DC, Yamada Y, Tanaka K, Torigoe K, Rauscher FJ III (2003) Regulated recruitment of HP1 to a euchromatic gene induces mitotically heritable, epigenetic gene silencing: a mammalian cell culture model of gene variegation. Genes Dev 17:1855–1869

    CAS  PubMed  PubMed Central  Google Scholar 

  • Azzaz AM, Vitalini MW, Thomas AS, Price JP, Blacketer MJ, Cryderman DE, Zirbel LN, Woodcock CL, Elcock AH, Wallrath LL, Shogren-Knaak MA (2014) Human heterochromatin protein 1α promotes nucleosome associations that drive chromatin condensation. J Biol Chem 289:6850–6861

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410:120–124

    CAS  PubMed  Google Scholar 

  • Barckmann B, El-Barouk M, Pélisson A, Mugat B, Li B, Franckhauser C, Fiston Lavier AS, Mirouze M, Fablet M, Chambeyron S (2018) The somatic piRNA pathway controls germline transposition over generations. Nucleic Acids Res 46:9524–9536

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    CAS  PubMed  Google Scholar 

  • Brueckner L, van Arensbergen J, Akhtar W, Pagie L, van Steensel B (2016) High-throughput assessment of context-dependent effects of chromatin proteins. Epigenetics Chromatin 9:43

    PubMed  PubMed Central  Google Scholar 

  • Canzio D, Liao M, Naber N, Pate E, Larson A, Wu S, Marina DB, Garcia JF, Madhani HD, Cooke R, Schuck P, Cheng Y, Narlikar GJ (2013) A conformational switch in HP1 releases auto-inhibition to drive heterochromatin assembly. Nature 496:377–381

    CAS  PubMed  PubMed Central  Google Scholar 

  • Casale AM, Cappucci U, Fanti L, Piacentini L (2019) Heterochromatin protein 1 (HP1) is intrinsically required for post-transcriptional regulation of Drosophila Germline Stem Cell (GSC) maintenance. Sci Rep 9:4372

    PubMed  PubMed Central  Google Scholar 

  • Castel SE, Martienssen RA (2013) RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat Rev Genet 14:100–112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cernilogar FM, Onorati MC, Kothe GO, Burroughs AM, Parsi KM, Breiling A, Lo Sardo F, Saxena A, Miyoshi K, Siomi H, Siomi MC, Carninci P, Gilmour DS, Corona DF, Orlando V (2011) Chromatin-associated RNA interference components contribute to transcriptional regulation in Drosophila. Nature 480:391–395

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cryderman DE, Grade SK, Li Y, Fanti L, Pimpinelli S, Wallrath LL (2005) Role of Drosophila HP1 in euchromatic gene expression. Dev Dyn 232:767–774

    CAS  PubMed  Google Scholar 

  • Czech B, Malone CD, Zhou R, Stark A, Schlingeheyde C, Dus M, Perrimon N, Kellis M, Wohlschlegel JA, Sachidanandam R, Hannon GJ, Brennecke J (2008) An endogenous small interfering RNA pathway in Drosophila. Nature 453:798–802

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Lucia F, Ni JQ, Vaillant C, Sun FL (2005) HP1 modulates the transcription of cell-cycle regulators in Drosophila melanogaster. Nucleic Acids Res 33:2852–2858

    PubMed  PubMed Central  Google Scholar 

  • de Wit E, Greil F, van Steensel B (2005) Genome-wide HP1 binding in Drosophila: developmental plasticity and genomic targeting signals. Genome Res 15:1265–1273

    PubMed  PubMed Central  Google Scholar 

  • de Wit E, Greil F, van Steensel B (2007) High-resolution mapping reveals links of HP1 with active and inactive chromatin components. PLoS Genet 3:e38

    PubMed  PubMed Central  Google Scholar 

  • Eissenberg JC, Elgin SC (2014) HP1a: a structural chromosomal protein regulating transcription. Trends Genet 30:103–110

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fagegaltier D, Bougé AL, Berry B, Poisot E, Sismeiro O, Coppée JY, Théodore L, Voinnet O, Antoniewski C (2009) The endogenous siRNA pathway is involved in heterochromatin formation in Drosophila. Proc Natl Acad Sci U S A 106:21258–21263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fanti L, Berloco M, Piacentini L, Pimpinelli S (2003) Chromosomal distribution of heterochromatin protein 1 (HP1) in Drosophila: a cytological map of euchromatic HP1 binding sites. Genetica 117:135–147

    CAS  PubMed  Google Scholar 

  • Feng J, Liu T, Qin B, Zhang Y, Liu XS (2012) Identifying ChIP-seq enrichment using MACS. Nat Protoc 7:1728–1740

    CAS  PubMed  Google Scholar 

  • Filion GJ, van Bemmel JG, Braunschweig U, Talhout W, Kind J, Ward LD, Brugman W, de Castro IJ, Kerkhoven RM, Bussemaker HJ, van Steensel B (2010) Systematic protein location mapping reveals five principal chromatin types in Drosophila cells. Cell 143:212–224

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghildiyal M, Seitz H, Horwich MD, Li C, Du T, Lee S, Xu J, Kittler EL, Zapp ML, Weng Z, Zamore PD (2008) Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Science 320:1077–1081

    CAS  PubMed  PubMed Central  Google Scholar 

  • Golic KG, Golic MM (1996) Engineering the Drosophila genome: chromosome rearrangements by design. Genetics 144:1693–1711

    CAS  PubMed  PubMed Central  Google Scholar 

  • Greil F, Moorman C, van Steensel B (2006) DamID: mapping of in vivo protein-genome interactions using tethered DNA adenine methyltransferase. Methods Enzymol 410:342–359

    CAS  PubMed  Google Scholar 

  • Grewal SI, Jia S (2007) Heterochromatin revisited. Nat Rev Genet 8:35–46

    CAS  PubMed  Google Scholar 

  • Iglesias N, Paulo JA, Tatarakis A, Wang X, Edwards AL, Bhanu NV, Garcia BA, Haas W, Gygi SP, Moazed D (2020) Native chromatin proteomics reveals a role for specific nucleoporins in heterochromatin organization and maintenance. Mol Cell 77:51–66.e8

    CAS  PubMed  Google Scholar 

  • Ilyin AA, Ryazansky SS, Doronin SA, Olenkina OM, Mikhaleva EA, Yakushev EY, Abramov YA, Belyakin SN, Ivankin AV, Pindyurin AV, Gvozdev VA, Klenov MS, Shevelyov YY (2017) Piwi interacts with chromatin at nuclear pores and promiscuously binds nuclear transcripts in Drosophila ovarian somatic cells. Nucleic Acids Res 45:7666–7680

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iwasaki YW, Murano K, Ishizu H, Shibuya A, Iyoda Y, Siomi MC, Siomi H, Saito K (2016) Piwi modulates chromatin accessibility by regulating multiple factors including histone H1 to repress transposons. Mol Cell 63:408–419

    CAS  PubMed  Google Scholar 

  • Johansson AM, Stenberg P, Pettersson F, Larsson J (2007) POF and HP1 bind expressed exons, suggesting a balancing mechanism for gene regulation. PLoS Genet 3:e209

    PubMed  PubMed Central  Google Scholar 

  • Kalverda B, Pickersgill H, Shloma VV, Fornerod M (2010) Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm. Cell 140:360–371

    CAS  PubMed  Google Scholar 

  • Kaminker JS, Bergman CM, Kronmiller B, Carlson J, Svirskas R, Patel S, Frise E, Wheeler DA, Lewis SE, Rubin GM, Ashburner M, Celniker SE (2002) The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective. Genome Biol 3:1–20

    Google Scholar 

  • Kassis JA, Brown JL (2013) Polycomb group response elements in Drosophila and vertebrates. Adv Genet 81:83–118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawamura Y, Saito K, Kin T, Ono Y, Asai K, Sunohara T, Okada TN, Siomi MC, Siomi H (2008) Drosophila endogenous small RNAs bind to Argonaute 2 in somatic cells. Nature 453:793–797

    CAS  PubMed  Google Scholar 

  • Klenov MS, Lavrov SA, Korbut AP, Stolyarenko AD, Yakushev EY, Reuter M, Pillai RS, Gvozdev VA (2014) Impact of nuclear Piwi elimination on chromatin state in Drosophila melanogaster ovaries. Nucleic Acids Res 42:6208–6218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon SH, Workman JL (2011) The changing faces of HP1: from heterochromatin formation and gene silencing to euchromatic gene expression: HP1 acts as a positive regulator of transcription. Bioessays 33:280–289

    CAS  PubMed  Google Scholar 

  • La Fortezza M, Grigolon G, Cosolo A, Pinduyrin A, Breimann L, Blum H, van Steensel B, Classen AK (2018) DamID profiling of dynamic polycomb-binding sites in Drosophila imaginal disc development and tumorigenesis. Epigenetics Chromatin 11:27

    PubMed  PubMed Central  Google Scholar 

  • Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410:116–120

    CAS  PubMed  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larson AG, Elnatan D, Keenen MM, Trnka MJ, Johnston JB, Burlingame AL, Agard DA, Redding S, Narlikar GJ (2017) Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547:236–240

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YC (2015) The role of piRNA-mediated epigenetic silencing in the population dynamics of transposable elements in Drosophila melanogaster. PLoS Genet 11:e1005269

    PubMed  PubMed Central  Google Scholar 

  • Lee YCG, Karpen GH (2017) Pervasive epigenetic effects of Drosophila euchromatic transposable elements impact their evolution. eLife 6:e25762

    PubMed  PubMed Central  Google Scholar 

  • Lee DH, Li Y, Shin DH, Yi SA, Bang SY, Park EK, Han JW, Kwon SH (2013) DNA microarray profiling of genes differentially regulated by three heterochromatin protein 1 (HP1) homologs in Drosophila. Biochem Biophys Res Commun 434:820–828

    CAS  PubMed  Google Scholar 

  • Li Y, Danzer JR, Alvarez P, Belmont AS, Wallrath LL (2003) Effects of tethering HP1 to euchromatic regions of the Drosophila genome. Development 130:1817–1824

    CAS  PubMed  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    PubMed  PubMed Central  Google Scholar 

  • Lundberg LE, Stenberg P, Larsson J (2013) HP1a, Su(var)3-9, SETDB1 and POF stimulate or repress gene expression depending on genomic position, gene length and expression pattern in Drosophila melanogaster. Nucleic Acids Res 41:4481–4494

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maksimov DA, Koryakov DE, Belyakin SN (2014) Developmental variation of the SUUR protein binding correlates with gene regulation and specific chromatin types in D. melanogaster. Chromosoma 123:253–264

    CAS  PubMed  Google Scholar 

  • Malone CD, Brennecke J, Dus M, Stark A, McCombie WR, Sachidanandam R, Hannon GJ (2009) Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary. Cell 137:522–535

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Marshall OJ, Brand AH (2017) Chromatin state changes during neural development revealed by in vivo cell-type specific profiling. Nat Commun 8:2271

    PubMed  PubMed Central  Google Scholar 

  • Mehta SJK, Kumar V, Mishra RK (2020) Drosophila ELYS regulates dorsal dynamics during development. J Biol Chem 295:2421–2437

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD (2019) PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res 47:D419–D426

    CAS  PubMed  Google Scholar 

  • Muchardt C, Guilleme M, Seeler JS, Trouche D, Dejean A, Yaniv M (2002) Coordinated methyl and RNA binding is required for heterochromatin localization of mammalian HP1α. EMBO Rep 3:975–981

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson MG, Linheiro RS, Bergman CM (2017) McClintock: an integrated pipeline for detecting transposable element insertions in whole genome shotgun sequencing data. G3 7:2763–2778

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nishibuchi G, Nakayama (2014) Biochemical and structural properties of heterochromatin protein 1: understanding its role in chromatin assembly. J Biochem 156:11–20

    CAS  PubMed  Google Scholar 

  • Ohtani H, Iwasaki YW, Shibuya A, Siomi H, Siomi MC, Saito K (2013) DmGTSF1 is necessary for Piwi-piRISC-mediated transcriptional transposon silencing in the Drosophila ovary. Genes Dev 27:1656–1661

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olivieri D, Sykora MM, Sachidanandam R, Mechtler K, Brennecke J (2010) An in vivo RNAi assay identifies major genetic and cellular requirements for primary piRNA biogenesis in Drosophila. EMBO J 29:3301–3317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park AR, Liu N, Neuenkirchen N, Guo Q, Lin H (2019) The role of maternal HP1a in early Drosophila embryogenesis via regulation of maternal transcript production. Genetics 211:201–217

    CAS  PubMed  Google Scholar 

  • Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C (2017) Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods 14:417–419

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL (2016) Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc 11:1650–1667

    CAS  PubMed  PubMed Central  Google Scholar 

  • Piacentini L, Fanti L, Negri R, Del Vescovo V, Fatica A, Altieri F, Pimpinelli S (2009) Heterochromatin protein 1 (HP1a) positively regulates euchromatic gene expression through RNA transcript association and interaction with hnRNPs in Drosophila. PLoS Genet 5:e1000670

    PubMed  PubMed Central  Google Scholar 

  • Pindyurin AV (2017) Genome-wide cell type-specific mapping of in vivo chromatin protein binding using an FLP-inducible DamID system in Drosophila. Methods Mol Biol 1654:99–124

    CAS  PubMed  Google Scholar 

  • Pindyurin AV, Pagie L, Kozhevnikova EN, van Arensbergen J, van Steensel B (2016) Inducible DamID systems for genomic mapping of chromatin proteins in Drosophila. Nucleic Acids Res 44:5646–5657

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pindyurin AV, Ilyin AA, Ivankin AV, Tselebrovsky MV, Nenasheva VV, Mikhaleva EA, Pagie L, van Steensel B, Shevelyov YY (2018) The large fraction of heterochromatin in Drosophila neurons is bound by both B-type lamin and HP1a. Epigenetics Chromatin 11:65

    CAS  PubMed  PubMed Central  Google Scholar 

  • Radion E, Morgunova V, Ryazansky S, Akulenko N, Lavrov S, Abramov Y, Komarov PA, Glukhov SI, Olovnikov I, Kalmykova A (2018) Key role of piRNAs in telomeric chromatin maintenance and telomere nuclear positioning in Drosophila germline. Epigenetics Chromatin 11:40

    PubMed  PubMed Central  Google Scholar 

  • Riddle NC, Leung W, Haynes KA, Granok H, Wuller J, Elgin SC (2008) An investigation of heterochromatin domains on the fourth chromosome of Drosophila melanogaster. Genetics 178:1177–1191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riddle NC, Minoda A, Kharchenko PV, Alekseyenko AA, Schwartz YB, Tolstorukov MY, Gorchakov AA, Jaffe JD, Kennedy C, Linder-Basso D, Peach SE, Shanower G, Zheng H, Kuroda MI, Pirrotta V, Park PJ, Elgin SCR, Karpen GH (2011) Plasticity in patterns of histone modifications and chromosomal proteins in Drosophila heterochromatin. Genome Res 21:147–163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rozhkov NV, Hammell M, Hannon GJ (2013) Multiple roles for Piwi in silencing Drosophila transposons. Genes Dev 27:400–412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sato K, Siomi MC (2018) Two distinct transcriptional controls triggered by nuclear Piwi-piRISCs in the Drosophila piRNA pathway. Curr Opin Struct Biol 53:69–76

    PubMed  Google Scholar 

  • Sentmanat MF, Elgin SC (2012) Ectopic assembly of heterochromatin in Drosophila melanogaster triggered by transposable elements. Proc Natl Acad Sci U S A 109:14104–14109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sienski G, Dönertas D, Brennecke J (2012) Transcriptional silencing of transposons by Piwi and maelstrom and its impact on chromatin state and gene expression. Cell 151:964–980

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sienski G, Batki J, Senti KA, Dönertas D, Tirian L, Meixner K, Brennecke J (2015) Silencio/CG9754 connects the Piwi-piRNA complex to the cellular heterochromatin machinery. Genes Dev 29:2258–2271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strom AR, Emelyanov AV, Mir M, Fyodorov DV, Darzacq X, Karpen GH (2017) Phase separation drives heterochromatin domain formation. Nature 547:241–245

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stuurman N, Maus N, Fisher PA (1995) Interphase phosphorylation of the Drosophila nuclear lamin: site-mapping using a monoclonal antibody. J Cell Sci 108(Pt 9):3137–3144

    CAS  PubMed  Google Scholar 

  • Sun FL, Haynes K, Simpson CL, Lee SD, Collins L, Wuller J, Eissenberg JC, Elgin SC (2004) cis-Acting determinants of heterochromatin formation on Drosophila melanogaster chromosome four. Mol Cell Biol 24:8210–8220

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taliaferro JM, Aspden JL, Bradley T, Marwha D, Blanchette M, Rio DC (2013) Two new and distinct roles for Drosophila Argonaute-2 in the nucleus: alternative pre-mRNA splicing and transcriptional repression. Genes Dev 27:378–389

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanentzapf G, Devenport D, Godt D, Brown NH (2007) Integrin-dependent anchoring of a stem-cell niche. Nat Cell Biol 9:1413–1418

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teo RYW, Anand A, Sridhar V, Okamura K, Kai T (2018) Heterochromatin protein 1a functions for piRNA biogenesis predominantly from pericentric and telomeric regions in Drosophila. Nat Commun 9:1735

    PubMed  PubMed Central  Google Scholar 

  • van Steensel B, Henikoff S (2000) Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat Biotechnol 18:424–428

    PubMed  Google Scholar 

  • Wang SH, Elgin SC (2011) Drosophila Piwi functions downstream of piRNA production mediating a chromatin-based transposon silencing mechanism in female germ line. Proc Natl Acad Sci U S A 108:21164–21169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yin H, Sweeney S, Raha D, Snyder M, Lin H (2011) A high-resolution whole-genome map of key chromatin modifications in the adult Drosophila melanogaster. PLoS Genet 7:e1002380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Gu J, Jin Y, Luo Y, Preall JB, Ma J, Czech B, Hannon GJ (2015) Panoramix enforces piRNA-dependent cotranscriptional silencing. Science 350:339–342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Wang D, Sun F (2011) Drosophila melanogaster heterochromatin protein HP1b plays important roles in transcriptional activation and development. Chromosoma 120:97–108

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Maria Logacheva and Aleksey Penin (Lomonosov Moscow State University) for sequencing of Drosophila genome; the Center of Common Scientific Equipment of the Institute of Molecular Genetics, RAS, for providing access to the confocal microscope; Dr. Alexei V. Pindyurin (IMCB SB RAS), Prof. Fanglin Sun (Tsinghua University, School of Medicine), and the Bloomington Drosophila Stock Center for the fly stocks; Prof. Sarah Elgin (Washington University in St. Louis) for anti-HP1a antibodies and Prof. Paul Fisher (Stony Brook University School of Medicine) for anti-Lamin Dm0 antibodies.

Funding

This research was funded by Russian Foundation for Basic Research Grant No. 18-34-00140 to AAI. A part of the work related to the characteristic of somatic HP1a knockdown was funded by Russian Foundation for Basic Research Grant No. 19-04-01307 to MSK.

Author information

Authors and Affiliations

Authors

Contributions

MSK and YYS conceived and designed the experiments; AAI, ADS, and YYS performed the experiments; AAI with participation of MSK and YYS analyzed the data; MSK and YYS wrote the paper.

Corresponding authors

Correspondence to Mikhail S. Klenov or Yuri Y. Shevelyov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 2368 kb)

ESM 2

(PDF 3623 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilyin, A.A., Stolyarenko, A.D., Klenov, M.S. et al. Various modes of HP1a interactions with the euchromatic chromosome arms in Drosophila ovarian somatic cells. Chromosoma 129, 201–214 (2020). https://doi.org/10.1007/s00412-020-00738-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-020-00738-5

Keywords

Navigation