Skip to main content
Log in

Chromosome painting in meiosis reveals pairing of specific chromosomes in polyploid Solanum species

  • Original Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Analysis of chromosome pairing has been an important tool to assess the genetic similarity of homologous and homoeologous chromosomes in polyploids. However, it is technically challenging to monitor the pairing of specific chromosomes in polyploid species, especially for plant species with a large number of small chromosomes. We developed oligonucleotide-based painting probes for four different potato chromosomes. We demonstrate that these probes are robust enough to monitor a single chromosome throughout the prophase I of meiosis in polyploid Solanum species. Cultivated potato (Solanum tuberosum, 2n = 4x = 48) is an autotetraploid. We demonstrate that the four copies of each potato chromosome pair as a quadrivalent in 66–78% of the meiotic cells at the pachytene stage. Solanum demissum (2n = 6x = 72) is a hexaploid and has been controversial regarding its nature as an autopolyploid or allopolyploid. Interestingly, no hexavalent pairing was observed in meiosis. Instead, we observed three independent bivalents in 83–98% of the meiotic cells at late diakinesis and early metaphase I for the four chromosomes. These results suggest that S. demissum has evolved into a cytologically stable state with predominantly bivalent pairing in meiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Armstrong KC (1971) Chromosome association at pachytene and metaphase in Medicago sativa. Can J Genet Cytol 13:697–702

    Article  Google Scholar 

  • Bomblies K, Jones G, Franklin C, Zickler D, Kleckner N (2016) The challenge of evolving stable polyploidy: could an increase in "crossover interference distance" play a central role? Chromosoma 125:287–300

    Article  Google Scholar 

  • Braz GT, He L, Zhao HN, Zhang T, Semrau K, Rouillard J-M, Torres GA, Jiang JM (2018) Comparative oligo-FISH mapping: an efficient and powerful methodology to reveal karyotypic and chromosomal evolution. Genetics 208:513–523

    Article  Google Scholar 

  • Calderon MD, Rey MD, Cabrera A, Prieto P (2014) The subtelomeric region is important for chromosome recognition and pairing during meiosis. Sci Rep-Uk 4:6488

    Article  CAS  Google Scholar 

  • Chang SB, de Jong H (2005) Production of alien chromosome additions and their utility in plant genetics. Cytogenet Genome Res 109:335–343

    Article  CAS  Google Scholar 

  • Curtis CA, Lukaszewski AJ, Chrzastek M (1991) Metaphase I pairing of deficient chromosomes and genetic mapping of deficiency breakpoints in common wheat. Genome 34:553–560

    Article  Google Scholar 

  • Darlington CD (1929) Meiosis in polyploids. II Aneuploid hyacinths. J Genet 21:17–56

    Article  Google Scholar 

  • Darlington CD (1931) Meiosis in diploid and tetraploid Primula sinensis. J Genet 24:65–96

    Article  Google Scholar 

  • Davies A, Jenkins G, Rees H (1990) Diploidisation of Lotusc corniculatus L. (Fabaceae) by elimination of multivalents. Chromosoma 99:289–295

    Article  Google Scholar 

  • Dong FG, Song JQ, Naess SK, Helgeson JP, Gebhardt C, Jiang JM (2000) Development and applications of a set of chromosome-specific cytogenetic DNA markers in potato. Theor Appl Genet 101:1001–1007

    Article  CAS  Google Scholar 

  • Doyle JJ, Sherman-Broyles S (2017) Double trouble: taxonomy and definitions of polyploidy. New Phytol 213:487–493

    Article  Google Scholar 

  • Filiault D, Ballerini E, Mandakova T, Akoz G, Derieg N, Schmutz J, Jenkins J, Grimwood J, Shu S, Hayes R, Hellsten U, Barry K, Yan J, Mihaltcheva S, Karafiatova K, Nizhynska V, Lysak M, Hodges S, Nordborg M (2018) The Aquilegia genome: adaptive radiation and an extraordinarily polymorphic chromosome with a unique history. bioRxiv:264101

  • Fjellstrom RG, Beuselinck PR, Steiner JJ (2001) RFLP marker analysis supports tetrasonic inheritance in Lotus corniculatus L. Theor Appl Genet 102:718–725

    Article  CAS  Google Scholar 

  • Garriga-Caldere K, Huigen DJ, Jacobsen E, Ramanna MS (1999) Prospects for introgressing tomato chromosomes into the potato genome: an assessment through GISH analysis. Genome 42:282–288

    Article  CAS  Google Scholar 

  • Gillies CB (1989) Chromosome pairing and fertility in polyploids. In: Gillies CB (ed) Fertility and chromosome pairing: recent studies in plants and animals. CRC Press, Boca Raton, pp 137–176

    Google Scholar 

  • Gong ZY, Wu YF, Koblizkova A, Torres GA, Wang K, Iovene M, Neumann P, Zhang WL, Novak P, Buell CR, Macas J, Jiang JM (2012) Repeatless and repeat-based centromeres in potato: implications for centromere evolution. Plant Cell 24:3559–3574

    Article  CAS  Google Scholar 

  • Han YH, Zhang T, Thammapichai P, Weng YQ, Jiang JM (2015) Chromosome-specific painting in cucumis species using bulked oligonucleotides. Genetics 200:771–779

    Article  Google Scholar 

  • Hardigan MA, Crisovan E, Hamilton JP, Kim J, Laimbeer P, Leisner CP, Manrique-Carpintero NC, Newton L, Pham GM, Vaillancourt B, Yang XM, Zeng ZX, Douches DS, Jiang JM, Veilleux RE, Buell CR (2016) Genome reduction uncovers a large dispensable genome and adaptive role for copy number variation in asexually propagated Solanum tuberosum. Plant Cell 28:388–405

    Article  CAS  Google Scholar 

  • Hawkes JG (1958) Kartoffel: I. taxonomy, cytology and crossability. In: Kappert H, Rudorf W (eds) Handbuch der Pflanzenzüchtung, 2nd edn. vol 3, Berlin, Paul Parey Verlag, pp 1–43

  • Hijmans R, Gavrilenko T, Stephenson S, Bamberg J, Salas A, Spooner DM (2007) Geographic and environmental range expansion through polyploidy in wild potatoes (Solanum section Petota). Glob Ecol Biogeogr 16:485–495

    Article  Google Scholar 

  • Hollister JD, Arnold BJ, Svedin E, Xue KS, Dilkes BP, Bomblies K (2012) Genetic adaptation associated with genome doubling in autotetraploid Arabidopsis arenosa. PLoS Genet 8:e1003093

    Article  Google Scholar 

  • Hou LL, Xu M, Zhang T, Xu ZH, Wang WY, Zhang JX, Yu MM, Ji W, Zhu CW, Gong ZY, Gu MH, Jiang JM, Yu HX (2018) Chromosome painting and its applications in cultivated and wild rice. BMC Plant Biol 18:110

    Article  Google Scholar 

  • Iovene M, Wielgus SM, Simon PW, Buell CR, Jiang JM (2008) Chromatin structure and physical mapping of chromosome 6 of potato and comparative analyses with tomato. Genetics 180:1307–1317

    Article  CAS  Google Scholar 

  • Irikura Y (1976) Cytogenetic studies on the haploid plants of tuberbearing Solanum species. II. Cytogenetic investigations on haploid plants and interspecific hybrids by utilizing haploidy. Res Bull Hokkaido Natl Agric Res Stn 115:1–80

    Google Scholar 

  • Jansky S (2000) Breeding for disease resisatnce in potato. Plant Breeding Reviews 19:69–156

    Google Scholar 

  • Ji Y, Chetelat RT (2007) GISH analysis of meiotic chromosome pairing in Solanum lycopersicoides introgression lines of cultivated tomato. Genome 50:825–833

    Article  CAS  Google Scholar 

  • Kamstra SA, Ramanna MS, De Jeu MJ, Kuipers AGJ, Jacobsen E (1999) Homoeologous chromosome pairing in the distant hybrid Alstroemeria aurea x A. inodora and the genome composition of its backcross derivatives determined by fluorescence in situ hybridization with species-specific probes. Heredity 82:69–78

    Article  Google Scholar 

  • Kato A, Lamb JC, Birchler JA (2004) Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci U S A 101:13554–13559

    Article  CAS  Google Scholar 

  • Kishimoto T, Yamakawa M, Nakazawa D, Amano J, Kuwayama S, Nakano M (2014) Meiotic chromosome pairing in intergeneric hybrids of colchicaceous ornamentals revealed by genomic in situ hybridization (GISH). Euphytica 200:251–257

    Article  CAS  Google Scholar 

  • Krebs SL, Hancock JF (1989) Tetrasomic inheritance of isoenzyme markers in the highbush blueberry Vaccinium corymbosum L. Heredity 63:11–18

    Article  Google Scholar 

  • Law CN, Snape JW, Worland AJ (1987) Aneuploidy in wheat and its uses in genetic analysis In: Lupton FGH (ed) Wheat Breeding, pp 71–108

    Chapter  Google Scholar 

  • Loidl J (1986) Synaptonemal complex spreading in Allium. II. Tetraploid A. vineale. Can J Genet Cytol 28:754–761

    Article  Google Scholar 

  • Loidl J, Jones GH (1986) Synaptonemal complex spreading in Allium .1. Triploid A. sphaerocephalon. Chromosoma 93:420–428

    Article  Google Scholar 

  • Lysak MA, Fransz PF, Ali HBM, Schubert I (2001) Chromosome painting in Arabidopsis thaliana. Plant J 28:689–697

    Article  CAS  Google Scholar 

  • Maestra B, Naranjo T (1998) Homoeologous relationships of Aegilops speltoides chromosomes to bread wheat. Theor Appl Genet 97:181–186

    Article  Google Scholar 

  • Mandakova T, Kovarik A, Zozomova-Lihova J, Shimizu-Inatsugi R, Shimizu KK, Mummenhoff K, Marhold K, Lysak MA (2013) The more the merrier: recent hybridization and polyploidy in Cardamine. Plant Cell 25:3280–3295

    Article  CAS  Google Scholar 

  • Mandakova T, Marhold K, Lysak MA (2014) The widespread crucifer species Cardamine flexuosa is an allotetraploid with a conserved subgenomic structure. New Phytol 201:982–992

    Article  CAS  Google Scholar 

  • Mandakova T, Gloss AD, Whiteman NK, Lysak MA (2016) How diploidization turned a tetraploid into a pseudotriploid. Am J Bot 103:1187–1196

    Article  CAS  Google Scholar 

  • Marks GE (1955) Cytogenetic studies in tuberous Solanum species I. genomic differentiation in the group demissa. J Genet 53:262–269

    Article  Google Scholar 

  • Matsubayashi M (1991) Phylogenetic relationships in the potato and its related species. In: Tsuchiya T, Gupta P (eds) Chromosome engineering in plants: genetics, breeding, evolution. Elsevier, Amsterdam, pp 93–118

    Google Scholar 

  • Moens PB (1970) The fine structure of meiotic chromosome pairing in natural and artificial Lilium polyploids. J Cell Sci 7:55–63

    CAS  PubMed  Google Scholar 

  • Naranjo T, Roca A, Goicoechea PG, Giraldez R (1987) Arm homoeology of wheat and rye chromosomes. Genome 29:873–882

    Article  Google Scholar 

  • Parisod C, Holderegger R, Brochmann C (2010) Evolutionary consequences of autopolyploidy. New Phytol 186:5–17

    Article  CAS  Google Scholar 

  • Pendinen G, Spooner DM, Jiang JM, Gavrilenko T (2012) Genomic in situ hybridization reveals both auto- and allopolyploid origins of different north and central American hexaploid potato (Solanum sect. Petota) species. Genome 55:407–415

    Article  CAS  Google Scholar 

  • Qu M, Li K, Han Y, Chen L, Li Z, Han Y (2017) Integrated karyotyping of woodland strawberry (Fragaria vesca) with oligopaint FISH probes. Cytogenet Genome Res 153:158–164

    Article  Google Scholar 

  • Quiros CF (1982) Tetrasomic segregation for multiple alleles in Alfalfa. Genetics 101:117–127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reddi VR (1970) Pachytene pairing and nature of polyploidy in Sorghum arundinaceum. Caryologia 23:295–302

    Article  Google Scholar 

  • Rodriguez F, Spooner DM (2009) Nitrate reductase phylogeny of potato (Solanum sect. Petota) genomes with emphasis on the origins of the polyploid species. Syst Bot 34:207–219

    Article  Google Scholar 

  • Scholz M, Pendinen G (2016) The effect of homoeologous meiotic pairing in tetraploid Hordeum bulbosum L. x H. vulgare L. hybrids on alien introgressions in offspring. Cytogenet Genome Res 150:139–149

    Article  Google Scholar 

  • Schubert I, Fransz PF, Fuchs J, de Jong JH (2001) Chromosome painting in plants. Methods Cell Sci 23:57–69

    Article  CAS  Google Scholar 

  • Spooner DM, Rodriguez F, Polgar Z, Ballard LE, Jansky SH (2008) Genomic origins of potato polyploids: GBSSI gene sequencing data. Crop Sci 48:S27–S36

    Article  CAS  Google Scholar 

  • Stack S (1982) Two-dimensional spreads of synaptonemal complexes from solanaceous plants. 1. The technique. Stain Technol 57:265–272

    Article  CAS  Google Scholar 

  • The Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195

    Article  Google Scholar 

  • Wolf PG, Soltis PS, Soltis DE (1989) Tetrasomic inheritance and chromosome pairing behaviour in the naturally occurring autotetraploid Heuchera grossulariifolia (Saxifragaceae). Genome 32:655–659

    Article  Google Scholar 

  • Xin H, Zhang T, Han Y, Wu Y, Shi J, Xi M, Jiang J (2018) Chromosome painting and comparative physical mapping of the sex chromosomes in Populus tomentosa and Populus deltoides. Chromosoma 127:313–321

    Article  CAS  Google Scholar 

  • Yant L, Hollister JD, Wright KM, Arnold BJ, Higgins JD, Franklin FCH, Bomblies K (2013) Meiotic adaptation to genome duplication in Arabidopsis arenosa. Curr Biol 23:2151–2156

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs. Bernd Friebe and Tomás Naranjo for valuable comments on the manuscript.

Funding

This research was supported partially by National Science Foundation (NSF) grant ISO-1237969 and MSU startup funds to J.J.

Author information

Authors and Affiliations

Authors

Contributions

J.J. conceived the research, L.H. and G.T.B. and conducted FISH experiments. L.H., G.T.B., G.A.T., and J.J. analyzed data. J.J. wrote the article.

Corresponding author

Correspondence to Jiming Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Figure S1

(PDF 1387 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Braz, G.T., Torres, G.A. et al. Chromosome painting in meiosis reveals pairing of specific chromosomes in polyploid Solanum species. Chromosoma 127, 505–513 (2018). https://doi.org/10.1007/s00412-018-0682-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-018-0682-9

Keywords

Navigation