Skip to main content
Log in

New insights into the mechanism of DNA mismatch repair

  • Review
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The genome of all organisms is constantly being challenged by endogenous and exogenous sources of DNA damage. Errors like base:base mismatches or small insertions and deletions, primarily introduced by DNA polymerases during DNA replication are repaired by an evolutionary conserved DNA mismatch repair (MMR) system. The MMR system, together with the DNA replication machinery, promote repair by an excision and resynthesis mechanism during or after DNA replication, increasing replication fidelity by up-to-three orders of magnitude. Consequently, inactivation of MMR genes results in elevated mutation rates that can lead to increased cancer susceptibility in humans. In this review, we summarize our current understanding of MMR with a focus on the different MMR protein complexes, their function and structure. We also discuss how recent findings have provided new insights in the spatio-temporal regulation and mechanism of MMR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acharya S, Wilson T, Gradia S, Kane MF, Guerrette S, Marsischky GT, Kolodner R, Fishel R (1996) hMSH2 forms specific mispair-binding complexes with hMSH3 and hMSH6. Proc Natl Acad Sci U S A 93:13629–13634

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Acharya S, Foster PL, Brooks P, Fishel R (2003) The coordinated functions of the E. coli MutS and MutL proteins in mismatch repair. Mol Cell 12:233–246

    Article  CAS  PubMed  Google Scholar 

  • Ahrends R, Kosinski J, Kirsch D, Manelyte L, Giron-Monzon L, Hummerich L, Schulz O, Spengler B, Friedhoff P (2006) Identifying an interaction site between MutH and the C-terminal domain of MutL by crosslinking, affinity purification, chemical coding and mass spectrometry. Nucleic Acids Res 34:3169–3180

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Allen DJ, Makhov A, Grilley M, Taylor J, Thresher R, Modrich P, Griffith JD (1997) MutS mediates heteroduplex loop formation by a translocation mechanism. EMBO J 16:4467–4476

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Allen-Soltero S, Martinez SL, Putnam CD, Kolodner RD (2014) A Saccharomyces cerevisiae RNase H2 interaction network functions to suppress genome instability. Mol Cell Biol 34:1521–1534

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Amin NS, Nguyen MN, Oh S, Kolodner RD (2001) exo1-Dependent mutator mutations: model system for studying functional interactions in mismatch repair. Mol Cell Biol 21:5142–5155

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Antony E, Hingorani MM (2003) Mismatch recognition-coupled stabilization of Msh2-Msh6 in an ATP-bound state at the initiation of DNA repair. Biochemistry 42:7682–7693

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arana ME, Holmes SF, Fortune JM, Moon AF, Pedersen LC, Kunkel TA (2010) Functional residues on the surface of the N-terminal domain of yeast Pms1. DNA Repair (Amst) 9:448–457

    Article  PubMed Central  CAS  Google Scholar 

  • Bak ST, Sakellariou D, Pena-Diaz J (2014) The dual nature of mismatch repair as antimutator and mutator: for better or for worse. Front Genet 5:287

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ban C, Yang W (1998) Crystal structure and ATPase activity of MutL: implications for DNA repair and mutagenesis. Cell 95:541–552

    Article  CAS  PubMed  Google Scholar 

  • Ban C, Junop M, Yang W (1999) Transformation of MutL by ATP binding and hydrolysis: a switch in DNA mismatch repair. Cell 97:85–97

    Article  CAS  PubMed  Google Scholar 

  • Bende SM, Grafstrom RH (1991) The DNA binding properties of the MutL protein isolated from Escherichia coli. Nucleic Acids Res 19:1549–1555

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Biswas I, Obmolova G, Takahashi M, Herr A, Newman MA, Yang W, Hsieh P (2001) Disruption of the helix-u-turn-helix motif of MutS protein: loss of subunit dimerization, mismatch binding and ATP hydrolysis. J Mol Biol 305:805–816

    Article  CAS  PubMed  Google Scholar 

  • Boland CR, Goel A (2010) Microsatellite instability in colorectal cancer. Gastroenterology 138(2073–2087):e2073

    Article  CAS  Google Scholar 

  • Boland CR, Lynch HT (2013) The history of Lynch syndrome. Familial Cancer 12:145–157

    Article  PubMed Central  PubMed  Google Scholar 

  • Bonenfant D, Towbin H, Coulot M, Schindler P, Mueller DR, van Oostrum J (2007) Analysis of dynamic changes in post-translational modifications of human histones during cell cycle by mass spectrometry. Mol Cell Proteomics: MCP 6:1917–1932

    Article  CAS  PubMed  Google Scholar 

  • Bowers J, Sokolsky T, Quach T, Alani E (1999) A mutation in the MSH6 subunit of the Saccharomyces cerevisiae MSH2-MSH6 complex disrupts mismatch recognition. J Biol Chem 274:16115–16125

    Article  CAS  PubMed  Google Scholar 

  • Campbell CS, Hombauer H, Srivatsan A, Bowen N, Gries K, Desai A, Putnam CD, Kolodner RD (2014) Mlh2 is an accessory factor for DNA mismatch repair in Saccharomyces cerevisiae. PLoS Genet 10:e1004327

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chen PC, Dudley S, Hagen W, Dizon D, Paxton L, Reichow D, Yoon SR, Yang K, Arnheim N, Liskay RM, Lipkin SM (2005) Contributions by MutL homologues Mlh3 and Pms2 to DNA mismatch repair and tumor suppression in the mouse. Cancer Res 65:8662–8670

    Article  CAS  PubMed  Google Scholar 

  • Church DN, Briggs SE, Palles C, Domingo E, Kearsey SJ, Grimes JM, Gorman M, Martin L, Howarth KM, Hodgson SV, Collaborators N, Kaur K, Taylor J, Tomlinson IP (2013) DNA polymerase epsilon and delta exonuclease domain mutations in endometrial cancer. Hum Mol Genet 22:2820–2828

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clark AB, Valle F, Drotschmann K, Gary RK, Kunkel TA (2000) Functional interaction of proliferating cell nuclear antigen with MSH2-MSH6 and MSH2-MSH3 complexes. J Biol Chem 275:36498–36501

    Article  CAS  PubMed  Google Scholar 

  • Constantin N, Dzantiev L, Kadyrov FA, Modrich P (2005) Human mismatch repair: reconstitution of a nick-directed bidirectional reaction. J Biol Chem 280:39752–39761

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Culligan KM, Hays JB (2000) Arabidopsis MutS homologs-AtMSH2, AtMSH3, AtMSH6, and a novel AtMSH7-form three distinct protein heterodimers with different specificities for mismatched DNA. Plant cell 12:991–1002

    PubMed Central  CAS  PubMed  Google Scholar 

  • Culligan KM, Meyer-Gauen G, Lyons-Weiler J, Hays JB (2000) Evolutionary origin, diversification and specialization of eukaryotic MutS homolog mismatch repair proteins. Nucleic Acids Res 28:463–471

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Damagnez V, Doutriaux MP, Radman M (1989) Saturation of mismatch repair in the mutD5 mutator strain of Escherichia coli. J Bacteriol 171:4494–4497

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dowen JM, Putnam CD, Kolodner RD (2010) Functional studies and homology modeling of Msh2-Msh3 predict that mispair recognition involves DNA bending and strand separation. Mol Cell Biol 30:3321–3328

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Drotschmann K, Hall MC, Shcherbakova PV, Wang H, Erie DA, Brownewell FR, Kool ET, Kunkel TA (2002) DNA binding properties of the yeast Msh2-Msh6 and Mlh1-Pms1 heterodimers. Biol Chem 383:969–975

    Article  CAS  PubMed  Google Scholar 

  • Drummond JT, Genschel J, Wolf E, Modrich P (1997) DHFR/MSH3 amplification in methotrexate-resistant cells alters the hMutSalpha/hMutSbeta ratio and reduces the efficiency of base-base mismatch repair. Proc Natl Acad Sci U S A 94:10144–10149

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dutta R, Inouye M (2000) GHKL, an emergent ATPase/kinase superfamily. Trends Biochem Sci 25:24–28

    Article  CAS  PubMed  Google Scholar 

  • Edelmann L, Edelmann W (2004) Loss of DNA mismatch repair function and cancer predisposition in the mouse: animal models for human hereditary nonpolyposis colorectal cancer. Am J Med Genet Part C, Seminars Med Genet 129C:91–99

    Article  Google Scholar 

  • Elez M, Murray AW, Bi LJ, Zhang XE, Matic I, Radman M (2010) Seeing mutations in living cells. Curr Biol 20:1432–1437

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fang WH, Modrich P (1993) Human strand-specific mismatch repair occurs by a bidirectional mechanism similar to that of the bacterial reaction. J Biol Chem 268:11838–11844

    CAS  PubMed  Google Scholar 

  • Flores-Rozas H, Kolodner RD (1998) The Saccharomyces cerevisiae MLH3 gene functions in MSH3-dependent suppression of frameshift mutations. Proc Natl Acad Sci U S A 95:12404–12409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Flores-Rozas H, Clark D, Kolodner RD (2000) Proliferating cell nuclear antigen and Msh2p-Msh6p interact to form an active mispair recognition complex. Nat Genet 26:375–378

    Article  CAS  PubMed  Google Scholar 

  • Galio L, Bouquet C, Brooks P (1999) ATP hydrolysis-dependent formation of a dynamic ternary nucleoprotein complex with MutS and MutL. Nucleic Acids Res 27:2325–2331

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gao B, Mohan R, Gupta RS (2009) Phylogenomics and protein signatures elucidating the evolutionary relationships among the Gammaproteobacteria. Int J Syst Evol Microbiol 59:234–247

    Article  CAS  PubMed  Google Scholar 

  • Genschel J, Littman SJ, Drummond JT, Modrich P (1998) Isolation of MutSbeta from human cells and comparison of the mismatch repair specificities of MutSbeta and MutSalpha. J Biol Chem 273:19895–19901

    Article  CAS  PubMed  Google Scholar 

  • Georgescu RE, Langston L, Yao NY, Yurieva O, Zhang D, Finkelstein J, Agarwal T, O’Donnell ME (2014) Mechanism of asymmetric polymerase assembly at the eukaryotic replication fork. Nat Struct Mol Biol 21:664–670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ghodgaonkar MM, Lazzaro F, Olivera-Pimentel M, Artola-Boran M, Cejka P, Reijns MA, Jackson AP, Plevani P, Muzi-Falconi M, Jiricny J (2013) Ribonucleotides misincorporated into DNA act as strand-discrimination signals in eukaryotic mismatch repair. Mol Cell 50:323–332

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gibson SL, Narayanan L, Hegan DC, Buermeyer AB, Liskay RM, Glazer PM (2006) Overexpression of the DNA mismatch repair factor, PMS2, confers hypermutability and DNA damage tolerance. Cancer Lett 244:195–202

    Article  CAS  PubMed  Google Scholar 

  • Goellner EM, Smith CE, Campbell CS, Hombauer H, Desai A, Putnam CD, Kolodner RD (2014) PCNA and Msh2-Msh6 activate an Mlh1-Pms1 endonuclease pathway required for Exo1-independent mismatch repair. Mol Cell 55:291–304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gorbalenya AE, Koonin EV (1990) Superfamily of UvrA-related NTP-binding proteins. Implications for rational classification of recombination/repair systems. J Mol Biol 213:583–591

    Article  CAS  PubMed  Google Scholar 

  • Gradia S, Subramanian D, Wilson T, Acharya S, Makhov A, Griffith J, Fishel R (1999) hMSH2-hMSH6 forms a hydrolysis-independent sliding clamp on mismatched DNA. Mol Cell 3:255–261

    Article  CAS  PubMed  Google Scholar 

  • Guarne A (2012) The functions of MutL in mismatch repair: the power of multitasking. Prog Mol Biol Transl Sci 110:41–70

    Article  CAS  PubMed  Google Scholar 

  • Guarne A, Ramon-Maiques S, Wolff EM, Ghirlando R, Hu X, Miller JH, Yang W (2004) Structure of the MutL C-terminal domain: a model of intact MutL and its roles in mismatch repair. EMBO J 23:4134–4145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gueneau E, Dherin C, Legrand P, Tellier-Lebegue C, Gilquin B, Bonnesoeur P, Londino F, Quemener C, Le Du MH, Marquez JA, Moutiez M, Gondry M, Boiteux S, Charbonnier JB (2013) Structure of the MutLalpha C-terminal domain reveals how Mlh1 contributes to Pms1 endonuclease site. Nat Struct Mol Biol 20:461–468

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Gellert M, Yang W (2012) Mechanism of mismatch recognition revealed by human MutSbeta bound to unpaired DNA loops. Nat Struct Mol Biol 19:72–78

    Article  CAS  Google Scholar 

  • Habraken Y, Sung P, Prakash L, Prakash S (1997) Enhancement of MSH2-MSH3-mediated mismatch recognition by the yeast MLH1-PMS1 complex. Curr Biol 7:790–793

    Article  CAS  PubMed  Google Scholar 

  • Harfe BD, Jinks-Robertson S (2000) DNA mismatch repair and genetic instability. Annu Rev Genet 34:359–399

    Article  CAS  PubMed  Google Scholar 

  • Harfe BD, Minesinger BK, Jinks-Robertson S (2000) Discrete in vivo roles for the MutL homologs Mlh2p and Mlh3p in the removal of frameshift intermediates in budding yeast. Curr Biol 10:145–148

    Article  CAS  PubMed  Google Scholar 

  • Hargreaves VV, Shell SS, Mazur DJ, Hess MT, Kolodner RD (2010) Interaction between the Msh2 and Msh6 nucleotide-binding sites in the Saccharomyces cerevisiae Msh2-Msh6 complex. J Biol Chem 285:9301–9310

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harrington JM, Kolodner RD (2007) Saccharomyces cerevisiae Msh2-Msh3 acts in repair of base-base mispairs. Mol Cell Biol 27:6546–6554

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hawk JD, Stefanovic L, Boyer JC, Petes TD, Farber RA (2005) Variation in efficiency of DNA mismatch repair at different sites in the yeast genome. Proc Natl Acad Sci U S A 102:8639–8643

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hess MT, Gupta RD, Kolodner RD (2002) Dominant Saccharomyces cerevisiae msh6 mutations cause increased mispair binding and decreased dissociation from mispairs by Msh2-Msh6 in the presence of ATP. J Biol Chem 277:25545–25553

    Article  CAS  PubMed  Google Scholar 

  • Hess MT, Mendillo ML, Mazur DJ, Kolodner RD (2006) Biochemical basis for dominant mutations in the Saccharomyces cerevisiae MSH6 gene. Proc Natl Acad Sci U S A 103:558–563

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Holmes J Jr, Clark S, Modrich P (1990) Strand-specific mismatch correction in nuclear extracts of human and Drosophila melanogaster cell lines. Proc Natl Acad Sci U S A 87:5837–5841

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hombauer H, Campbell CS, Smith CE, Desai A, Kolodner RD (2011a) Visualization of eukaryotic DNA mismatch repair reveals distinct recognition and repair intermediates. Cell 147:1040–1053

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hombauer H, Srivatsan A, Putnam CD, Kolodner RD (2011b) Mismatch repair, but not heteroduplex rejection, is temporally coupled to DNA replication. Science 334:1713–1716

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hong Z, Jiang J, Hashiguchi K, Hoshi M, Lan L, Yasui A (2008) Recruitment of mismatch repair proteins to the site of DNA damage in human cells. J Cell Sci 121:3146–3154

    Article  CAS  PubMed  Google Scholar 

  • Hsieh P, Yamane K (2008) DNA mismatch repair: molecular mechanism, cancer, and ageing. Mech Ageing Dev 129:391–407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang J, Papadopoulos N, McKinley AJ, Farrington SM, Curtis LJ, Wyllie AH, Zheng S, Willson JK, Markowitz SD, Morin P, Kinzler KW, Vogelstein B, Dunlop MG (1996) APC mutations in colorectal tumors with mismatch repair deficiency. Proc Natl Acad Sci U S A 93:9049–9054

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hura GL, Tsai CL, Claridge SA, Mendillo ML, Smith JM, Williams GJ, Mastroianni AJ, Alivisatos AP, Putnam CD, Kolodner RD, Tainer JA (2013) DNA conformations in mismatch repair probed in solution by X-ray scattering from gold nanocrystals. Proc Natl Acad Sci U S A 110:17308–17313

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Iaccarino I, Marra G, Palombo F, Jiricny J (1998) hMSH2 and hMSH6 play distinct roles in mismatch binding and contribute differently to the ATPase activity of hMutSalpha. EMBO J 17:2677–2686

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Indiani C, McInerney P, Georgescu R, Goodman MF, O’Donnell M (2005) A sliding-clamp toolbelt binds high- and low-fidelity DNA polymerases simultaneously. Mol Cell 19:805–815

    Article  CAS  PubMed  Google Scholar 

  • Iyer RR, Pluciennik A, Burdett V, Modrich PL (2006) DNA mismatch repair: functions and mechanisms. Chem Rev 106:302–323

    Article  CAS  PubMed  Google Scholar 

  • Iyer RR, Pohlhaus TJ, Chen S, Hura GL, Dzantiev L, Beese LS, Modrich P (2008) The MutSalpha-proliferating cell nuclear antigen interaction in human DNA mismatch repair. J Biol Chem 283:13310–13319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Iyer RR, Pluciennik A, Genschel J, Tsai MS, Beese LS, Modrich P (2010) MutLalpha and proliferating cell nuclear antigen share binding sites on MutSbeta. J Biol Chem 285:11730–11739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jiricny J (2013) Postreplicative mismatch repair. Cold Spring Harbor Perspectives Biol 5:a012633

    Article  CAS  Google Scholar 

  • Junop MS, Obmolova G, Rausch K, Hsieh P, Yang W (2001) Composite active site of an ABC ATPase: MutS uses ATP to verify mismatch recognition and authorize DNA repair. Mol Cell 7:1–12

    Article  CAS  PubMed  Google Scholar 

  • Junop MS, Yang W, Funchain P, Clendenin W, Miller JH (2003) In vitro and in vivo studies of MutS, MutL and MutH mutants: correlation of mismatch repair and DNA recombination. DNA Repair (Amst) 2:387–405

    Article  CAS  Google Scholar 

  • Kadyrov FA, Dzantiev L, Constantin N, Modrich P (2006) Endonucleolytic function of MutLalpha in human mismatch repair. Cell 126:297–308

    Article  CAS  PubMed  Google Scholar 

  • Kadyrov FA, Genschel J, Fang Y, Penland E, Edelmann W, Modrich P (2009) A possible mechanism for exonuclease 1-independent eukaryotic mismatch repair. Proc Natl Acad Sci U S A 106:8495–8500

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kadyrova LY, Mertz TM, Zhang Y, Northam MR, Sheng Z, Lobachev KS, Shcherbakova PV, Kadyrov FA (2013) A reversible histone H3 acetylation cooperates with mismatch repair and replicative polymerases in maintaining genome stability. PLoS Genet 9:e1003899

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kane DP, Shcherbakova PV (2014) A common cancer-associated DNA polymerase epsilon mutation causes an exceptionally strong mutator phenotype, indicating fidelity defects distinct from loss of proofreading. Cancer Res 74:1895–1901

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim N, Huang SN, Williams JS, Li YC, Clark AB, Cho JE, Kunkel TA, Pommier Y, Jinks-Robertson S (2011) Mutagenic processing of ribonucleotides in DNA by yeast topoisomerase I. Science 332:1561–1564

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87:159–170

    Article  CAS  PubMed  Google Scholar 

  • Kleczkowska HE, Marra G, Lettieri T, Jiricny J (2001) hMSH3 and hMSH6 interact with PCNA and colocalize with it to replication foci. Genes Dev 15:724–736

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kolas NK, Svetlanov A, Lenzi ML, Macaluso FP, Lipkin SM, Liskay RM, Greally J, Edelmann W, Cohen PE (2005) Localization of MMR proteins on meiotic chromosomes in mice indicates distinct functions during prophase I. J Cell Biol 171:447–458

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kolodner RD, Marsischky GT (1999) Eukaryotic DNA mismatch repair. Curr Opin Genet Dev 9:89–96

    Article  CAS  PubMed  Google Scholar 

  • Kolodner RD, Tytell JD, Schmeits JL, Kane MF, Gupta RD, Weger J, Wahlberg S, Fox EA, Peel D, Ziogas A, Garber JE, Syngal S, Anton-Culver H, Li FP (1999) Germ-line msh6 mutations in colorectal cancer families. Cancer Res 59:5068–5074

    CAS  PubMed  Google Scholar 

  • Kosinski J, Steindorf I, Bujnicki JM, Giron-Monzon L, Friedhoff P (2005) Analysis of the quaternary structure of the MutL C-terminal domain. J Mol Biol 351:895–909

    Article  CAS  PubMed  Google Scholar 

  • Kunkel TA, Erie DA (2005) DNA mismatch repair. Annu Rev Biochem 74:681–710

    Article  CAS  PubMed  Google Scholar 

  • Laguri C, Duband-Goulet I, Friedrich N, Axt M, Belin P, Callebaut I, Gilquin B, Zinn-Justin S, Couprie J (2008) Human mismatch repair protein MSH6 contains a PWWP domain that targets double stranded DNA. Biochemistry 47:6199–6207

    Article  CAS  PubMed  Google Scholar 

  • Lamers MH, Perrakis A, Enzlin JH, Winterwerp HH, de Wind N, Sixma TK (2000) The crystal structure of DNA mismatch repair protein MutS binding to a G x T mismatch. Nature 407:711–717

    Article  CAS  PubMed  Google Scholar 

  • Lang WH, Coats JE, Majka J, Hura GL, Lin Y, Rasnik I, McMurray CT (2011) Conformational trapping of mismatch recognition complex MSH2/MSH3 on repair-resistant DNA loops. Proc Natl Acad Sci U S A 108:E837–844

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lau PJ, Flores-Rozas H, Kolodner RD (2002) Isolation and characterization of new proliferating cell nuclear antigen (POL30) mutator mutants that are defective in DNA mismatch repair. Mol Cell Biol 22:6669–6680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee JB, Cho WK, Park J, Jeon Y, Kim D, Lee SH, Fishel R (2014) Single-molecule views of MutS on mismatched DNA. DNA Repair (Amst) 20:82–93

    Article  CAS  Google Scholar 

  • Lenhart JS, Pillon MC, Guarne A, Simmons LA (2013a) Trapping and visualizing intermediate steps in the mismatch repair pathway in vivo. Mol Microbiol 90:680–698

    Article  CAS  PubMed  Google Scholar 

  • Lenhart JS, Sharma A, Hingorani MM, Simmons LA (2013b) DnaN clamp zones provide a platform for spatiotemporal coupling of mismatch detection to DNA replication. Mol Microbiol 87:553–568

    Article  CAS  PubMed  Google Scholar 

  • Li GM (1999) The role of mismatch repair in DNA damage-induced apoptosis. Oncol Res 11:393–400

    CAS  PubMed  Google Scholar 

  • Li GM (2008) Mechanisms and functions of DNA mismatch repair. Cell Res 18:85–98

    Article  CAS  PubMed  Google Scholar 

  • Li F, Mao G, Tong D, Huang J, Gu L, Yang W, Li GM (2013) The histone mark H3K36me3 regulates human DNA mismatch repair through its interaction with MutSalpha. Cell 153:590–600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li H, Wawrose JS, Gooding WE, Garraway LA, Lui VW, Peyser ND, Grandis JR (2014) Genomic analysis of head and neck squamous cell carcinoma cell lines and human tumors: a rational approach to preclinical model selection. Mol Cancer Res: MCR 12:571–582

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liberti SE, Andersen SD, Wang J, May A, Miron S, Perderiset M, Keijzers G, Nielsen FC, Charbonnier JB, Bohr VA, Rasmussen LJ (2011) Bi-directional routing of DNA mismatch repair protein human exonuclease 1 to replication foci and DNA double strand breaks. DNA Repair (Amst) 10:73–86

    Article  CAS  Google Scholar 

  • Liberti SE, Larrea AA, Kunkel TA (2013) Exonuclease 1 preferentially repairs mismatches generated by DNA polymerase alpha. DNA Repair (Amst) 12:92–96

    Article  PubMed Central  CAS  Google Scholar 

  • Lopez Castel A, Cleary JD, Pearson CE (2010) Repeat instability as the basis for human diseases and as a potential target for therapy. Nat Rev Mol Cell Biol 11:165–170

    Article  PubMed  CAS  Google Scholar 

  • Lujan SA, Williams JS, Pursell ZF, Abdulovic-Cui AA, Clark AB, Nick McElhinny SA, Kunkel TA (2012) Mismatch repair balances leading and lagging strand DNA replication fidelity. PLoS Genet 8:e1003016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lujan SA, Williams JS, Clausen AR, Clark AB, Kunkel TA (2013) Ribonucleotides are signals for mismatch repair of leading-strand replication errors. Mol Cell 50:437–443

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • MacPhee DG (1995) Mismatch repair, somatic mutations, and the origins of cancer. Cancer Res 55:5489–5492

    CAS  PubMed  Google Scholar 

  • Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, Fan RS, Zborowska E, Kinzler KW, Vogelstein B et al (1995) Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 268:1336–1338

    Article  CAS  PubMed  Google Scholar 

  • Marra G, Iaccarino I, Lettieri T, Roscilli G, Delmastro P, Jiricny J (1998) Mismatch repair deficiency associated with overexpression of the MSH3 gene. Proc Natl Acad Sci U S A 95:8568–8573

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marsischky GT, Filosi N, Kane MF, Kolodner R (1996) Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dev 10:407–420

    Article  CAS  PubMed  Google Scholar 

  • Matson SW, Robertson AB (2006) The UvrD helicase and its modulation by the mismatch repair protein MutL. Nucleic Acids Res 34:4089–4097

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mazur DJ, Mendillo ML, Kolodner RD (2006) Inhibition of Msh6 ATPase activity by mispaired DNA induces a Msh2(ATP)-Msh6(ATP) state capable of hydrolysis-independent movement along DNA. Mol Cell 22:39–49

    Article  CAS  PubMed  Google Scholar 

  • McCulloch SD, Kunkel TA (2008) The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. Cell Res 18:148–161

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McMurray CT (2010) Mechanisms of trinucleotide repeat instability during human development. Nat Rev Genet 11:786–799

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mendillo ML, Mazur DJ, Kolodner RD (2005) Analysis of the interaction between the Saccharomyces cerevisiae MSH2-MSH6 and MLH1-PMS1 complexes with DNA using a reversible DNA end-blocking system. J Biol Chem 280:22245–22257

    Article  CAS  PubMed  Google Scholar 

  • Mendillo ML, Putnam CD, Kolodner RD (2007) Escherichia coli MutS tetramerization domain structure reveals that stable dimers but not tetramers are essential for DNA mismatch repair in vivo. J Biol Chem 282:16345–16354

    Article  CAS  PubMed  Google Scholar 

  • Mendillo ML, Hargreaves VV, Jamison JW, Mo AO, Li S, Putnam CD, Woods VL Jr, Kolodner RD (2009) A conserved MutS homolog connector domain interface interacts with MutL homologs. Proc Natl Acad Sci U S A 106:22223–22228

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mendillo ML, Putnam CD, Mo AO, Jamison JW, Li S, Woods VL Jr, Kolodner RD (2010) Probing DNA- and ATP-mediated conformational changes in the MutS family of mispair recognition proteins using deuterium exchange mass spectrometry. J Biol Chem 285:13170–13182

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Myllykangas S, Himberg J, Bohling T, Nagy B, Hollmen J, Knuutila S (2006) DNA copy number amplification profiling of human neoplasms. Oncogene 25:7324–7332

    Article  CAS  PubMed  Google Scholar 

  • Nick McElhinny SA, Kumar D, Clark AB, Watt DL, Watts BE, Lundstrom EB, Johansson E, Chabes A, Kunkel TA (2010) Genome instability due to ribonucleotide incorporation into DNA. Nat Chem Biol 6:774–781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nishant KT, Plys AJ, Alani E (2008) A mutation in the putative MLH3 endonuclease domain confers a defect in both mismatch repair and meiosis in Saccharomyces cerevisiae. Genetics 179:747–755

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Norris AM, Woodruff RD, D’Agostino RB Jr, Clodfelter JE, Scarpinato KD (2007) Elevated levels of the mismatch repair protein PMS2 are associated with prostate cancer. Prostate 67:214–225

    Article  CAS  PubMed  Google Scholar 

  • Norris AM, Gentry M, Peehl DM, D’Agostino R Jr, Scarpinato KD (2009) The elevated expression of a mismatch repair protein is a predictor for biochemical recurrence after radical prostatectomy. Cancer Epidemiol, Biomarkers Prevent: Publ Am Assoc Cancer Res, Cosponsored Am Soc Preventive Oncol 18:57–64

  • Obmolova G, Ban C, Hsieh P, Yang W (2000) Crystal structures of mismatch repair protein MutS and its complex with a substrate DNA. Nature 407:703–710

    Article  CAS  PubMed  Google Scholar 

  • Oki E, Oda S, Maehara Y, Sugimachi K (1999) Mutated gene-specific phenotypes of dinucleotide repeat instability in human colorectal carcinoma cell lines deficient in DNA mismatch repair. Oncogene 18:2143–2147

    Article  CAS  PubMed  Google Scholar 

  • Owen BA, Yang Z, Lai M, Gajec M, Badger JD 2nd, Hayes JJ, Edelmann W, Kucherlapati R, Wilson TM, McMurray CT (2005) (CAG)(n)-hairpin DNA binds to Msh2-Msh3 and changes properties of mismatch recognition. Nat Struct Mol Biol 12:663–670

    Article  CAS  PubMed  Google Scholar 

  • Palles C, Cazier JB, Howarth KM, Domingo E, Jones AM, Broderick P, Kemp Z, Spain SL, Guarino E, Salguero I, Sherborne A, Chubb D, Carvajal-Carmona LG, Ma Y, Kaur K, Dobbins S, Barclay E, Gorman M, Martin L, Kovac MB, Humphray S, Consortium C, Consortium WGS, Lucassen A, Holmes CC, Bentley D, Donnelly P, Taylor J, Petridis C, Roylance R, Sawyer EJ, Kerr DJ, Clark S, Grimes J, Kearsey SE, Thomas HJ, McVean G, Houlston RS, Tomlinson I (2013) Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat Genet 45:136–144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Panigrahi GB, Slean MM, Simard JP, Gileadi O, Pearson CE (2010) Isolated short CTG/CAG DNA slip-outs are repaired efficiently by hMutSbeta, but clustered slip-outs are poorly repaired. Proc Natl Acad Sci U S A 107:12593–12598

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pavlov YI, Mian IM, Kunkel TA (2003) Evidence for preferential mismatch repair of lagging strand DNA replication errors in yeast. Curr Biol 13:744–748

    Article  CAS  PubMed  Google Scholar 

  • Peltomaki P (2003) Role of DNA mismatch repair defects in the pathogenesis of human cancer. J Clin Oncol 21:1174–1179

    Article  CAS  PubMed  Google Scholar 

  • Peltomaki P (2014) Epigenetic mechanisms in the pathogenesis of Lynch syndrome. Clin Genet 85:403–412

    Article  CAS  PubMed  Google Scholar 

  • Peltomaki P, Vasen H (2004) Mutations associated with HNPCC predisposition—update of ICG-HNPCC/INSiGHT mutation database. Dis Markers 20:269–276

    Article  PubMed Central  PubMed  Google Scholar 

  • Pena-Diaz J, Jiricny J (2012) Mammalian mismatch repair: error-free or error-prone? Trends Biochem Sci 37:206–214

    Article  CAS  PubMed  Google Scholar 

  • Pena-Diaz J, Bregenhorn S, Ghodgaonkar M, Follonier C, Artola-Boran M, Castor D, Lopes M, Sartori AA, Jiricny J (2012) Noncanonical mismatch repair as a source of genomic instability in human cells. Mol Cell 47:669–680

    Article  CAS  PubMed  Google Scholar 

  • Pluciennik A, Modrich P (2007) Protein roadblocks and helix discontinuities are barriers to the initiation of mismatch repair. Proc Natl Acad Sci U S A 104:12709–12713

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pluciennik A, Dzantiev L, Iyer RR, Constantin N, Kadyrov FA, Modrich P (2010) PCNA function in the activation and strand direction of MutLalpha endonuclease in mismatch repair. Proc Natl Acad Sci U S A 107:16066–16071

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Prindle MJ, Loeb LA (2012) DNA polymerase delta in DNA replication and genome maintenance. Environ Mol Mutagen 53:666–682

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Prolla TA, Baker SM, Harris AC, Tsao JL, Yao X, Bronner CE, Zheng B, Gordon M, Reneker J, Arnheim N, Shibata D, Bradley A, Liskay RM (1998) Tumour susceptibility and spontaneous mutation in mice deficient in Mlh1, Pms1 and Pms2 DNA mismatch repair. Nat Genet 18:276–279

    Article  CAS  PubMed  Google Scholar 

  • Ranjha L, Anand R, Cejka P (2014) The Saccharomyces cerevisiae Mlh1-Mlh3 heterodimer is an endonuclease that preferentially binds to Holliday junctions. J Biol Chem 289:5674–5686

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Raschle M, Marra G, Nystrom-Lahti M, Schar P, Jiricny J (1999) Identification of hMutLbeta, a heterodimer of hMLH1 and hPMS1. J Biol Chem 274:32368–32375

    Article  CAS  PubMed  Google Scholar 

  • Reenan RA, Kolodner RD (1992a) Characterization of insertion mutations in the Saccharomyces cerevisiae MSH1 and MSH2 genes: evidence for separate mitochondrial and nuclear functions. Genetics 132:975–985

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reenan RA, Kolodner RD (1992b) Isolation and characterization of two Saccharomyces cerevisiae genes encoding homologs of the bacterial HexA and MutS mismatch repair proteins. Genetics 132:963–973

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reha-Krantz LJ (2010) DNA polymerase proofreading: multiple roles maintain genome stability. Biochim Biophys Acta 1804:1049–1063

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez GP, Romanova NV, Bao G, Rouf NC, Kow YW, Crouse GF (2012) Mismatch repair-dependent mutagenesis in nondividing cells. Proc Natl Acad Sci U S A 109:6153–6158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roesner LM, Mielke C, Fahnrich S, Merkhoffer Y, Dittmar KE, Drexler HG, Dirks WG (2013) Stable expression of MutLgamma in human cells reveals no specific response to mismatched DNA, but distinct recruitment to damage sites. J Cell Biochem 114:2405–2414

    Article  CAS  PubMed  Google Scholar 

  • Rogacheva MV, Manhart CM, Chen C, Guarne A, Surtees J, Alani E (2014) Mlh1-Mlh3, a meiotic crossover and DNA mismatch repair factor, is a Msh2-Msh3-stimulated endonuclease. J Biol Chem 289:5664–5673

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ryba T, Hiratani I, Lu J, Itoh M, Kulik M, Zhang J, Schulz TC, Robins AJ, Dalton S, Gilbert DM (2010) Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. Genome Res 20:761–770

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sacho EJ, Kadyrov FA, Modrich P, Kunkel TA, Erie DA (2008) Direct visualization of asymmetric adenine-nucleotide-induced conformational changes in MutL alpha. Mol Cell 29:112–121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Santucci-Darmanin S, Neyton S, Lespinasse F, Saunieres A, Gaudray P, Paquis-Flucklinger V (2002) The DNA mismatch-repair MLH3 protein interacts with MSH4 in meiotic cells, supporting a role for this MutL homolog in mammalian meiotic recombination. Hum Mol Genet 11:1697–1706

    Article  CAS  PubMed  Google Scholar 

  • Schaaper RM, Radman M (1989) The extreme mutator effect of Escherichia coli mutD5 results from saturation of mismatch repair by excessive DNA replication errors. EMBO J 8:3511–3516

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schmutte C, Sadoff MM, Shim KS, Acharya S, Fishel R (2001) The interaction of DNA mismatch repair proteins with human exonuclease I. J Biol Chem 276:33011–33018

    Article  CAS  PubMed  Google Scholar 

  • Shcherbakova PV, Kunkel TA (1999) Mutator phenotypes conferred by MLH1 overexpression and by heterozygosity for mlh1 mutations. Mol Cell Biol 19:3177–3183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shcherbakova PV, Hall MC, Lewis MS, Bennett SE, Martin KJ, Bushel PR, Afshari CA, Kunkel TA (2001) Inactivation of DNA mismatch repair by increased expression of yeast MLH1. Mol Cell Biol 21:940–951

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shell SS, Putnam CD, Kolodner RD (2007a) Chimeric Saccharomyces cerevisiae Msh6 protein with an Msh3 mispair-binding domain combines properties of both proteins. Proc Natl Acad Sci U S A 104:10956–10961

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shell SS, Putnam CD, Kolodner RD (2007b) The N terminus of Saccharomyces cerevisiae Msh6 is an unstructured tether to PCNA. Mol Cell 26:565–578

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sia EA, Kokoska RJ, Dominska M, Greenwell P, Petes TD (1997) Microsatellite instability in yeast: dependence on repeat unit size and DNA mismatch repair genes. Mol Cell Biol 17:2851–2858

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Simmons LA, Davies BW, Grossman AD, Walker GC (2008) Beta clamp directs localization of mismatch repair in Bacillus subtilis. Mol Cell 29:291–301

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Slean MM, Panigrahi GB, Ranum LP, Pearson CE (2008) Mutagenic roles of DNA "repair" proteins in antibody diversity and disease-associated trinucleotide repeat instability. DNA Repair (Amst) 7:1135–1154

    Article  CAS  Google Scholar 

  • Smith BT, Grossman AD, Walker GC (2001) Visualization of mismatch repair in bacterial cells. Mol Cell 8:1197–1206

    Article  CAS  PubMed  Google Scholar 

  • Smith CE, Mendillo ML, Bowen N, Hombauer H, Campbell CS, Desai A, Putnam CD, Kolodner RD (2013) Dominant mutations in S. cerevisiae PMS1 identify the Mlh1-Pms1 endonuclease active site and an exonuclease 1-independent mismatch repair pathway. PLoS Genet 9:e1003869

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Snowden T, Acharya S, Butz C, Berardini M, Fishel R (2004) hMSH4-hMSH5 recognizes Holliday Junctions and forms a meiosis-specific sliding clamp that embraces homologous chromosomes. Mol Cell 15:437–451

    Article  CAS  PubMed  Google Scholar 

  • Srivatsan A, Bowen N, Kolodner RD (2014) Mispair-specific recruitment of the Mlh1-Pms1 complex identifies repair substrates of the Saccharomyces cerevisiae Msh2-Msh3 complex. J Biol Chem 289:9352–9364

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sugawara N, Paques F, Colaiacovo M, Haber JE (1997) Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in double-strand break-induced recombination. Proc Natl Acad Sci U S A 94:9214–9219

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Surtees JA, Alani E (2006) Mismatch repair factor MSH2-MSH3 binds and alters the conformation of branched DNA structures predicted to form during genetic recombination. J Mol Biol 360:523–536

    Article  CAS  PubMed  Google Scholar 

  • Thomas DC, Roberts JD, Kunkel TA (1991) Heteroduplex repair in extracts of human HeLa cells. J Biol Chem 266:3744–3751

    CAS  PubMed  Google Scholar 

  • Tian L, Hou C, Tian K, Holcomb NC, Gu L, Li GM (2009) Mismatch recognition protein MutSbeta does not hijack (CAG)n hairpin repair in vitro. J Biol Chem 284:20452–20456

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tishkoff DX, Boerger AL, Bertrand P, Filosi N, Gaida GM, Kane MF, Kolodner RD (1997) Identification and characterization of Saccharomyces cerevisiae EXO1, a gene encoding an exonuclease that interacts with MSH2. Proc Natl Acad Sci U S A 94:7487–7492

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tran HT, Gordenin DA, Resnick MA (1999) The 3′→5′ exonucleases of DNA polymerases delta and epsilon and the 5′→3′ exonuclease Exo1 have major roles in postreplication mutation avoidance in Saccharomyces cerevisiae. Mol Cell Biol 19:2000–2007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Umar A, Buermeyer AB, Simon JA, Thomas DC, Clark AB, Liskay RM, Kunkel TA (1996) Requirement for PCNA in DNA mismatch repair at a step preceding DNA resynthesis. Cell 87:65–73

    Article  CAS  PubMed  Google Scholar 

  • van den Broek WJ, Nelen MR, Wansink DG, Coerwinkel MM, te Riele H, Groenen PJ, Wieringa B (2002) Somatic expansion behaviour of the (CTG)n repeat in myotonic dystrophy knock-in mice is differentially affected by Msh3 and Msh6 mismatch-repair proteins. Hum Mol Genet 11:191–198

    Article  PubMed  Google Scholar 

  • Wagner EJ, Carpenter PB (2012) Understanding the language of Lys36 methylation at histone H3. Nat Rev Mol Cell Biol 13:115–126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang H, Hays JB (2002) Mismatch repair in human nuclear extracts. Quantitative analyses of excision of nicked circular mismatched DNA substrates, constructed by a new technique employing synthetic oligonucleotides. J Biol Chem 277:26136–26142

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Hays JB (2003) Mismatch repair in human nuclear extracts: effects of internal DNA-hairpin structures between mismatches and excision-initiation nicks on mismatch correction and mismatch-provoked excision. J Biol Chem 278:28686–28693

    Article  CAS  PubMed  Google Scholar 

  • Warren JJ, Pohlhaus TJ, Changela A, Iyer RR, Modrich PL, Beese LS (2007) Structure of the human MutSalpha DNA lesion recognition complex. Mol Cell 26:579–592

    Article  CAS  PubMed  Google Scholar 

  • Wei K, Clark AB, Wong E, Kane MF, Mazur DJ, Parris T, Kolas NK, Russell R, Hou H Jr, Kneitz B, Yang G, Kunkel TA, Kolodner RD, Cohen PE, Edelmann W (2003) Inactivation of Exonuclease 1 in mice results in DNA mismatch repair defects, increased cancer susceptibility, and male and female sterility. Genes Dev 17:603–614

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Welsh KM, Lu AL, Clark S, Modrich P (1987) Isolation and characterization of the Escherichia coli mutH gene product. J Biol Chem 262:15624–15629

    CAS  PubMed  Google Scholar 

  • Winkler I, Marx AD, Lariviere D, Heinze RJ, Cristovao M, Reumer A, Curth U, Sixma TK, Friedhoff P (2011) Chemical trapping of the dynamic MutS-MutL complex formed in DNA mismatch repair in Escherichia coli. J Biol Chem 286:17326–17337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang W (2000) Structure and function of mismatch repair proteins. Mutat Res 460:245–256

    Article  CAS  PubMed  Google Scholar 

  • Zakharyevich K, Tang S, Ma Y, Hunter N (2012) Delineation of joint molecule resolution pathways in meiosis identifies a crossover-specific resolvase. Cell 149:334–347

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Y, Yuan F, Presnell SR, Tian K, Gao Y, Tomkinson AE, Gu L, Li GM (2005) Reconstitution of 5′-directed human mismatch repair in a purified system. Cell 122:693–705

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Christopher Putnam for critical reading of this review.

Compliance with ethical standards

Funding

This work was supported by the Harald zur Hausen Fellowship from the Deutsches Krebsforschungszentrum (DKFZ) and the Marie Curie Career Integration Grant “iMMR” (both granted to H.H.). R.K. was supported by the NIH grant GM50006 and the Ludwig Institute for Cancer Research.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Hombauer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyes, G.X., Schmidt, T.T., Kolodner, R.D. et al. New insights into the mechanism of DNA mismatch repair. Chromosoma 124, 443–462 (2015). https://doi.org/10.1007/s00412-015-0514-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-015-0514-0

Keywords

Navigation