Skip to main content
Log in

Chromosome structure deficiencies in MCPH1 syndrome

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Mutations in the MCPH1 gene result in primary microcephaly in combination with a unique cellular phenotype of defective chromosome condensation. MCPH1 patient cells display premature chromosome condensation in G2 phase of the cell cycle and delayed decondensation in early G1 phase, observable as an increased proportion of cells with prophase-like appearance. MCPH1 deficiency thus appears to uncouple the chromosome cycle from the coordinated series of events that take place during mitosis such as some phases of the centrosome cycle and nuclear envelope breakdown. Here, we provide a further characterization of the effects of MCPH1 loss-of-function on chromosome morphology. In comparison to healthy controls, chromosomes of MCPH1 patients are shorter and display a pronounced coiling of their central chromatid axes. In addition, a substantial fraction of metaphase chromosomes shows apparently unresolved chromatids with twisted appearance. The patient chromosomes also showed signs of defective centromeric cohesion, which become more apparent and pronounced after harsh hypotonic conditions. Taking together, the observed alterations indicate additional so far unknown functions of MCPH1 during chromosome shaping and dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alderton GK, Galbiati L, Griffith E, Surinya KH, Neitzel H, Jackson AP, Jeggo PA, O'Driscoll M (2006) Regulation of mitotic entry by microcephalin and its overlap with ATR signalling. Nat Cell Biol 8:725–733

    Article  CAS  PubMed  Google Scholar 

  • Awad S, Al-Dosari MS, Al-Yacoub N, Colak D, Salih MA, Alkuraya FS, Poizat C (2013) Mutation in PHC1 implicates chromatin remodeling in primary microcephaly pathogenesis. Hum Mol Genet 22(11):2200–2213. doi:10.1093/hmg/ddt072

    Article  CAS  PubMed  Google Scholar 

  • Barbelanne M, Tsang WY (2014) Molecular and cellular basis of autosomal recessive primary microcephaly. Biomed Res Int 2014:547986. doi:10.1155/2014/547986

    Article  PubMed Central  PubMed  Google Scholar 

  • Callier P, Faivre L, Cusin V, Marle N, Thauvin-Robinet C, Sandre D, Rousseau T, Sagot P, Lacombe E, Faber V, Mugneret F (2005) Microcephaly is not mandatory for the diagnosis of mosaic variegated aneuploidy syndrome. Am J Med Genet A 137(2):204–207

    Article  CAS  PubMed  Google Scholar 

  • Cox J, Jackson AP, Bond J, Woods CG (2006) What primary microcephaly can tell us about brain growth. Trends Mol Med 12:358–366

    Article  CAS  PubMed  Google Scholar 

  • Earnshaw WC, Laemmli UK (1983) Architecture of metaphase chromosomes and chromosome scaffolds. J Cell Biol 96(1):84–93

    Article  CAS  PubMed  Google Scholar 

  • Earnshaw WC, Halligan B, Cooke CA, Heck MM, Liu LF (1985) Topoisomerase II is a structural component of mitotic chromosome scaffolds. J Cell Biol 100(5):1706–1715

    Article  CAS  PubMed  Google Scholar 

  • Gasser SM, Laroche T, Falquet J, Boy de la Tour E, Laemmli UK (1986) Metaphase chromosome structure. Involvement of topoisomerase II. J Mol Biol 188(4):613–629

    Article  CAS  PubMed  Google Scholar 

  • Gavvovidis I, Pöhlmann C, Marchal JA, Stumm M, Yamashita D, Hirano T, Schindler D, Neitzel H, Trimborn M (2010) MCPH1 patient cells exhibit delayed release from DNA damage-induced G2/M checkpoint arrest. Cell Cycle 9(24):4893–4899

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gavvovidis I, Rost I, Trimborn M, Kaiser FJ, Purps J, Wiek C, Hanenberg H, Neitzel H, Schindler D (2012) A novel MCPH1 isoform complements the defective chromosome condensation of human MCPH1-deficient cells. PLoS One 7(8):e40387. doi:10.1371/journal.pone.0040387

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gerkes EH, van der Kevie-Kersemaekers AM, Yakin M, Smeets DF, van Ravenswaaij-Arts CM (2010) The importance of chromosome studies in Roberts syndrome/SC phocomelia and other cohesinopathies. Eur J Med Genet 53(1):40–44. doi:10.1016/j.ejmg.2009.10.005

    Article  PubMed  Google Scholar 

  • Ghani-Kakhki M, Robinson PN, Morlot S, Mitter D, Trimborn M, Albrecht B, Varon R, Sperling K, Neitzel H (2012) Two missense mutations in the primary autosomal recessive microcephaly gene MCPH1 disrupt the function of the highly conserved N-terminal BRCT domain of microcephalin. Mol Syndromol 3:6–13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gibbons RJ, Picketts DJ, Villard L, Higgs DR (1995) Mutations in a putative global transcriptional regulator cause X-linked mental retardation with alpha-thalassemia (ATR-X syndrome). Cell 80(6):837–845

    Article  CAS  PubMed  Google Scholar 

  • Giménez-Abián JF, Clarke DJ, Mullinger AM, Downes CS, Johnson RT (1995) A postprophase topoisomerase II-dependent chromatid core separation step in the formation of metaphase chromosomes. J Cell Biol 131(1):7–17

    Article  PubMed  Google Scholar 

  • Gimenez-Abian JF, Diaz-Martinez LA, Wirth KG, De la Torre C, Clarke DJ (2005) Proteasome activity is required for centromere separation independently of securin degradation in human cells. Cell Cycle 4:1558–1560

    Article  CAS  PubMed  Google Scholar 

  • Hanks S, Coleman K, Reid S, Plaja A, Firth H, Fitzpatrick D, Kidd A, Méhes K, Nash R, Robin N, Shannon N, Tolmie J, Swansbury J, Irrthum A, Douglas J, Rahman N (2004) Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat Genet 36(11):1159–1161

    Article  CAS  PubMed  Google Scholar 

  • Hirano T, Mitchison TJ (1994) A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro. Cell 79(3):449–458

    Article  CAS  PubMed  Google Scholar 

  • Hirano T, Kobayashi R, Hirano M (1997) Condensins, chromosome condensation protein complexes containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein. Cell 89(4):511–521

    Article  CAS  PubMed  Google Scholar 

  • Ikeuchi T, Yang ZQ, Wakamatsu K, Kajii T (2004) Induction of premature chromatid separation (PCS) in individuals with PCS trait and in normal controls. Am J Med Genet A 127A:128–132

    Article  PubMed  Google Scholar 

  • Jackson AP, Eastwood H, Bell SM, Adu J, Toomes C, Carr IM, Roberts E, Hampshire DJ, Crow YJ, Mighell AJ, Karbani G, Jafri H, Rashid Y, Mueller RF, Markham AF, Woods CG (2002) Identification of microcephalin, a protein implicated in determining the size of the human brain. Am J Hum Genet 71:136–142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kajii T, Kawai T, Takumi T, Misu H, Mabuchi O, Takahashi Y, Tachino M, Nihei F, Ikeuchi T (1998) Mosaic variegated aneuploidy with multiple congenital abnormalities: homozygosity for total premature chromatid separation trait. Am J Med Genet 78(3):245–249

    Article  CAS  PubMed  Google Scholar 

  • Kaur M, DeScipio C, McCallum J, Yaeger D, Devoto M, Jackson LG, Spinner NB, Krantz ID (2005) Precocious sister chromatid separation (PSCS) in Cornelia de Lange syndrome. Am J Med Genet A 138:27–31

    Article  PubMed Central  PubMed  Google Scholar 

  • Khan MA, Rupp VM, Orpinell M, Hussain MS, Altmüller J, Steinmetz MO, Enzinger C, Thiele H, Höhne W, Nürnberg G, Baig SM, Ansar M, Nürnberg P, Vincent JB, Speicher MR, Gönczy P, Windpassinger C (2014) A missense mutation in the PISA domain of HsSAS-6 causes autosomal recessive primary microcephaly in a large consanguineous Pakistani family. Hum Mol Genet 23(22):5940–5949. doi:10.1093/hmg/ddu318

    Article  PubMed  Google Scholar 

  • Kimura K, Cuvier O, Hirano T (2001) Chromosome condensation by a human condensin complex in Xenopus egg extracts. J Biol Chem 276:5417–5420

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1978) Levels of organization of the DNA in eucaryotic chromosomes. Pharmacol Rev 30(4):469–476

    CAS  PubMed  Google Scholar 

  • Liang Y, Gao H, Lin SY, Goss JA, Du C, Li K (2014) Mcph1/Brit1 deficiency promotes genomic instability and tumor formation in a mouse model. Oncogene. doi:10.1038/onc.2014.367

    Google Scholar 

  • Lin SY, Rai R, Li K, Xu ZX, Elledge SJ (2005) BRIT1/MCPH1 is a DNA damage responsive protein that regulates the Brca1-Chk1 pathway, implicating checkpoint dysfunction in microcephaly. Proc Natl Acad Sci U S A 102(42):15105–15109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu J, Krantz ID (2008) Cohesin and human disease. Annu Rev Genomics Hum Genet 9:303–320. doi:10.1146/annurev.genom.9.081307.164211

    Article  CAS  PubMed  Google Scholar 

  • Losada A, Hirano M, Hirano T (2002) Cohesin release is required for sister chromatid resolution, but not for condensin-mediated compaction, at the onset of mitosis. Genes Dev 16(23):3004–3016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • MacCallum DE, Losada A, Kobayashi R, Hirano T (2002) ISWI remodeling complexes in Xenopus egg extracts: identification as major chromosomal components that are regulated by INCENP-aurora B. Mol Biol Cell 13(1):25–39

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maeshima K, Laemmli UK (2003) A two-step scaffolding model for mitotic chromosome assembly. Dev Cell 4(4):467–480

    Article  CAS  PubMed  Google Scholar 

  • Mahmood S, Ahmad W, Hassan MJ (2011) Autosomal recessive primary microcephaly (MCPH): clinical manifestations, genetic heterogeneity and mutation continuum. Orphanet J Rare Dis 6:39. doi:10.1186/1750-1172-6-39

    Article  PubMed Central  PubMed  Google Scholar 

  • Naumova N, Imakaev M, Fudenberg G, Zhan Y, Lajoie BR, Mirny LA, Dekker J (2013) Organization of the mitotic chromosome. Science 342(6161):948–953. doi:10.1126/science.1236083

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Neitzel H, Neumann LM, Schindler D, Wirges A, Tonnies H, Trimborn M, Krebsova A, Richter R, Sperling K (2002) Premature chromosome condensation in humans associated with microcephaly and mental retardation: a novel autosomal recessive condition. Am J Hum Genet 70:1015–1022

    Article  PubMed Central  PubMed  Google Scholar 

  • Ono T, Losada A, Hirano M, Myers MP, Neuwald AF, Hirano T (2003) Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells. Cell 115:109–121

    Article  CAS  PubMed  Google Scholar 

  • Paulson JR, Laemmli UK (1977) The structure of histone-depleted metaphase chromosomes. Cell 12(3):817–828

    Article  CAS  PubMed  Google Scholar 

  • Peng G, Yim EK, Dai H, Jackson AP, Iv B, Pan MR, Hu R, Li K, Lin SY (2009) BRIT1/MCPH1 links chromatin remodelling to DNA damage response. Nat Cell Biol 11(7):865–872. doi:10.1038/ncb1895

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rai R, Dai H, Multani AS, Li K, Chin K, Gray J, Lahad JP, Liang J, Mills GB, Meric-Bernstam F, Lin SY (2006) BRIT1 regulates early DNA damage response, chromosomal integrity, and cancer. Cancer Cell 10(2):145–157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rauch A, Thiel CT, Schindler D, Wick U, Crow YJ, Ekici AB, van Essen AJ, Goecke TO, Al-Gazali L, Chrzanowska KH, Zweier C, Brunner HG, Becker K, Curry CJ, Dallapiccola B, Devriendt K, Dörfler A, Kinning E, Megarbane A, Meinecke P, Semple RK, Spranger S, Toutain A, Trembath RC, Voss E, Wilson L, Hennekam R, de Zegher F, Dörr HG, Reis A (2008) Mutations in the pericentrin (PCNT) gene cause primordial dwarfism. Science 319:816–819. doi:10.1126/science.1151174

    Article  CAS  PubMed  Google Scholar 

  • Ritchie K, Seah C, Moulin J, Isaac C, Dick F, Bérubé NG (2008) Loss of ATRX leads to chromosome cohesion and congression defects. J Cell Biol 180(2):315–324. doi:10.1083/jcb.200706083

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saitoh N, Goldberg IG, Wood ER, Earnshaw WC (1994) ScII: an abundant chromosome scaffold protein is a member of a family of putative ATPases with an unusual predicted tertiary structure. J Cell Biol 127(2):303–318

    Article  CAS  PubMed  Google Scholar 

  • Shintomi K, Hirano T (2010) Sister chromatid resolution: a cohesin releasing network and beyond. Chromosoma 119:459–467

    Article  PubMed  Google Scholar 

  • Shintomi K, Hirano T (2011) The relative ratio of condensin I to II determines chromosome shapes. Genes Dev 25:1464–1469

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singh N, Basnet H, Wiltshire TD, Mohammad DH, Thompson JR, Héroux A, Botuyan MV, Yaffe MB, Couch FJ, Rosenfeld MG, Mer G (2012) Dual recognition of phosphoserine and phosphotyrosine in histone variant H2A.X by DNA damage response protein MCPH1. Proc Natl Acad Sci U S A 109(36):14381–14386. doi:10.1073/pnas.1212366109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stubblefield E, Wray W (1971) Architecture of the Chinese hamster metaphase chromosome. Chromosoma 32(3):262–294

    Article  CAS  PubMed  Google Scholar 

  • Sumner AT (1991) Chromosoma 100(6):410–418

    Article  CAS  PubMed  Google Scholar 

  • Tibelius A, Marhold J, Zentgraf H, Heilig CE, Neitzel H, Ducommun B, Rauch A, Ho AD, Bartek J, Krämer A (2009) Microcephalin and pericentrin regulate mitotic entry via centrosome-associated Chk1. J Cell Biol 185(7):1149–1157. doi:10.1083/jcb.200810159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tomkins D, Hunter A, Roberts M (1979) Cytogenetic findings in Roberts-SC phocomelia syndrome(s). Am J Med Genet 4(1):17–26

    Article  CAS  PubMed  Google Scholar 

  • Tonkin ET, Wang TJ, Lisgo S, Bamshad MJ, Strachan T (2004) NIPBL, encoding a homolog of fungal Scc2-type sister chromatid cohesion proteins and fly Nipped-B, is mutated in Cornelia de Lange syndrome. Nat Genet 36:636–641

    Article  CAS  PubMed  Google Scholar 

  • Trimborn M, Bell SM, Felix C, Rashid Y, Jafri H, Griffiths PD, Neumann LM, Krebs A, Reis A, Sperling K, Neitzel H, Jackson AP (2004) Mutations in microcephalin cause aberrant regulation of chromosome condensation. Am J Hum Genet 75:261–266

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Trimborn M, Schindler D, Neitzel H, Hirano T (2006) Misregulated chromosome condensation in MCPH1 primary microcephaly is mediated by condensin II. Cell Cycle 5:322–326

    Article  CAS  PubMed  Google Scholar 

  • Van Den Berg DJ, Francke U (1993) Roberts syndrome: a review of 100 cases and a new rating system for severity. Am J Med Genet 47(7):1104–1123

    Article  Google Scholar 

  • Vega H, Waisfisz Q, Gordillo M, Sakai N, Yanagihara I, Yamada M, van Gosliga D, Kayserili H, Xu C, Ozono K, Jabs EW, Inui K, Joenje H (2005) Roberts syndrome is caused by mutations in ESCO2, a human homolog of yeast ECO1 that is essential for the establishment of sister chromatid cohesion. Nat Genet 37:468–470

    Article  CAS  PubMed  Google Scholar 

  • Venkatesh T, Suresh PS (2014) Emerging roles of MCPH1: expedition from primary microcephaly to cancer. Eur J Cell Biol 93(3):98–105. doi:10.1016/j.ejcb.2014.01.005

    Article  CAS  PubMed  Google Scholar 

  • Vernos I, Raats J, Hirano T, Heasman J, Karsenti E, Wylie C (1995) Xklp1, a chromosomal Xenopus kinesin-like protein essential for spindle organization and chromosome positioning. Cell 81(1):117–127

    Article  CAS  PubMed  Google Scholar 

  • Woods CG (2004) Human microcephaly. Curr Opin Neurobiol 14:112–117

    Article  CAS  PubMed  Google Scholar 

  • Wray W, Stubblefield E (1970) A new method for the rapid isolation of chromosomes, mitotic apparatus, or nuclei from mammalian fibroblasts at near neutral pH. Exp Cell Res 59(3):469–478

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Lee J, Stern DF (2004) Microcephalin is a DNA damage response protein involved in regulation of CHK1 and BRCA1. J Biol Chem 279:34091–34094

    Article  CAS  PubMed  Google Scholar 

  • Yamashita D, Shintomi K, Ono T, Gavvovidis I, Schindler D, Neitzel H, Trimborn M, Hirano T (2011) MCPH1 regulates chromosome condensation and shaping as a composite modulator of condensin II. J Cell Biol 194:841–854

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to the patients, their parents and the clinicians for their cooperation. We thank S. Niehage for her excellent technical assistance in some analyses. Technical and human support provided by CICT of Universidad de Jaén (UJA, MINECO, Junta de Andalucía, FEDER) is gratefully acknowledged.

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All procedures were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Funding

This work was supported by Universidad de Jaén (grant UJA2011/12/36), Junta de Andalucía (Funding program “Ayudas a grupos de investigación”, reference BIO220) and by Deutsche Forschungsgemeinschaft (grant NE531/5-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.A. Marchal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arroyo, M., Trimborn, M., Sánchez, A. et al. Chromosome structure deficiencies in MCPH1 syndrome. Chromosoma 124, 491–501 (2015). https://doi.org/10.1007/s00412-015-0512-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-015-0512-2

Keywords

Navigation