Skip to main content

Advertisement

Log in

Chromatin maintenance and dynamics in senescence: a spotlight on SAHF formation and the epigenome of senescent cells

  • Review
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Senescence is a stable proliferation arrest characterized by profound changes in cellular morphology and metabolism as well as by extensive chromatin reorganization in the nucleus. One particular hallmark of chromatin changes during senescence is the formation of punctate DNA foci in DAPI-stained senescent cells that have been called senescence-associated heterochromatin foci (SAHF). While many advances have been made concerning our understanding of the effectors of senescence, how chromatin is reorganized and maintained in senescent cells has remained largely elusive. Because chromatin structure is inherently dynamic, senescent cells face the challenge of developing chromatin maintenance mechanisms in the absence of DNA replication in order to maintain the senescent phenotype. Here, we summarize and review recent findings shedding light on SAHF composition and formation via spatial repositioning of chromatin, with a specific focus on the role of lamin B1 for this process. In addition, we discuss the physiological implication of SAHF formation, the role of histone variants, and histone chaperones during senescence and also elaborate on the more general changes observed in the epigenome of the senescent cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ATRX:

Alpha-thalassemia/mental retardation X-linked

DAXX:

Death-domain associated protein

HP1:

Heterochromatin protein 1

H3K9me3:

Histone H3 trimethylated at lysine 9

OIS:

Oncogene-induced senescence

PML:

Promyelocytic leukemia

PML-NBs:

PML nuclear bodies

SAHF:

Senescence-associated heterochromatin foci

References

  • Acosta JC, O’Loghlen A, Banito A et al (2008) Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133:1006–1018

    PubMed  CAS  Google Scholar 

  • Adams PD (2007) Remodeling of chromatin structure in senescent cells and its potential impact on tumor suppression and aging. Gene 397:84–93

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ahmad K, Henikoff S (2002) The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell 9:1191–1200

    PubMed  CAS  Google Scholar 

  • Aird KM, Zhang G, Li H et al (2013) Suppression of nucleotide metabolism underlies the establishment and maintenance of oncogene-induced senescence. Cell Rep 3:1252–1265

    PubMed  CAS  Google Scholar 

  • Banumathy G, Somaiah N, Zhang R et al (2009) Human UBN1 is an ortholog of yeast Hpc2p and has an essential role in the HIRA/ASF1a chromatin-remodeling pathway in senescent cells. Mol Cell Biol 29:758–770

    PubMed  CAS  PubMed Central  Google Scholar 

  • Barascu A, Le Chalony C, Pennarun GEL et al (2012) Oxidative stress induces an ATM-independent senescence pathway through p38 MAPK-mediated lamin B1 accumulation. EMBO J 31:1080–1094

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bartkova J, Rezaei N, Liontos M et al (2006) Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444:633–637

    PubMed  CAS  Google Scholar 

  • Belancio VP, Roy-Engel AM, Pochampally RR, Deininger P (2010) Somatic expression of LINE-1 elements in human tissues. Nucleic Acids Res 38:3909–3922

    PubMed  CAS  PubMed Central  Google Scholar 

  • Berman BP, Weisenberger DJ, Aman JF et al (2011) Berman 2012 DNA hypermethylation cancer LADs. Nat Publ Group 44:40–46

    Google Scholar 

  • Bernardi R, Pandolfi PP (2007) Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat Rev Mol Cell Biol 8:1006–1016

    PubMed  CAS  Google Scholar 

  • Bickmore WA, van Steensel B (2013) Genome architecture: domain organization of interphase chromosomes. Cell 152:1270–1284

    PubMed  CAS  Google Scholar 

  • Bodor DL, Rodríguez MG, Moreno N, Jansen LET (2012) Analysis of protein turnover by quantitative SNAP-based pulse-chase imaging. Curr Protoc Cell Biol Chapter 8:Unit8.8

  • Bracken AP, Kleine-Kohlbrecher D, Dietrich N et al (2007) The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev 21:525–530

    PubMed  CAS  PubMed Central  Google Scholar 

  • Braig M, Lee S, Loddenkemper C et al (2005) Oncogene-induced senescence as an initial barrier in lymphoma development. Nat Cell Biol 436:660–665

    CAS  Google Scholar 

  • Burgess RJ, Zhang Z (2013) Histone chaperones in nucleosome assembly and human disease. Nat Struct Mol Biol 20:14–22

    PubMed  CAS  PubMed Central  Google Scholar 

  • Burke B, Stewart CL (2013) The nuclear lamins: flexibility in function. Nat Rev Mol Cell Biol 14:13–24

    PubMed  CAS  Google Scholar 

  • Catez F, Yang H, Tracey KJ et al (2004) Network of dynamic interactions between histone H1 and high-mobility-group proteins in chromatin. Mol Cell Biol 24:4321–4328

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chan HM (2005) The p400 E1A-associated protein is a novel component of the p53—p21 senescence pathway. Genes Dev 19:196–201

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chandra T, Narita M (2013) High-order chromatin structure and the epigenome in SAHFs. Nucleus 4:23–28

    PubMed  PubMed Central  Google Scholar 

  • Chandra T, Kirschner K, Thuret J-Y et al (2012) Independence of repressive histone marks and chromatin compaction during senescent heterochromatic layer formation. Mol Cell 47:203–214

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chen Z, Trotman LC, Shaffer D et al (2005) Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nat Cell Biol 436:725–730

    CAS  Google Scholar 

  • Chicas A, Wang X, Zhang C et al (2010) Dissecting the unique role of the retinoblastoma tumor suppressor during cellular senescence. Cancer Cell 17:376–387

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chow C-M, Georgiou A, Szutorisz H et al (2005) Variant histone H3.3 marks promoters of transcriptionally active genes during mammalian cell division. EMBO Rep 6:354–360

    PubMed  CAS  PubMed Central  Google Scholar 

  • Collado M, Serrano M (2010) Senescence in tumours: evidence from mice and humans. Nat Rev Cancer 10:51–57

    PubMed  CAS  PubMed Central  Google Scholar 

  • Collado M, Gil J, Efeyan A et al (2005) Tumour biology: senescence in premalignant tumours. Nat Cell Biol 436:642

    CAS  Google Scholar 

  • Coppe J-P, Patil CK, Rodier F et al (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6:e301

    PubMed Central  Google Scholar 

  • Corpet A, De Koning L, Toedling J et al (2010) Asf1b, the necessary Asf1 isoform for proliferation, is predictive of outcome in breast cancer. EMBO J 30:480–493

    PubMed  PubMed Central  Google Scholar 

  • Corpet A, Olbrich T, Gwerder M et al (2014) Dynamics of histone H3.3 deposition in proliferating and senescent cells reveals a DAXX-dependent targeting to PML-NBs important for pericentromeric heterochromatin organization. Cell Cycle 13

  • Costanzi C, Pehrson JR (1998) Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature 393:599–601

    PubMed  CAS  Google Scholar 

  • Cruickshanks HA, McBryan T, Nelson DM et al (2013) Senescent cells harbour features of the cancer epigenome. Nat Cell Biol 15:1495–1506

    PubMed  CAS  Google Scholar 

  • David G (2012) Regulation of oncogene-induced cell cycle exit and senescence by chromatin modifiers. Cancer Biol Ther 13:992–1000

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dawson MA, Bannister AJ, Göttgens B et al (2009) JAK2 phosphorylates histone H3Y41 and excludes HP1α from chromatin. Nature 461:819–822

    PubMed  CAS  PubMed Central  Google Scholar 

  • De Cecco M, Criscione SW, Peckham EJ et al (2013) Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements. Aging Cell 12:247–256

    PubMed  PubMed Central  Google Scholar 

  • de Stanchina E, Querido E, Narita M et al (2004) PML is a direct p53 target that modulates p53 effector functions. Mol Cell 13:523–535

    PubMed  Google Scholar 

  • Deal RB, Henikoff JG, Henikoff S (2010) Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones. Science 328:1161–1164

    PubMed  CAS  PubMed Central  Google Scholar 

  • Delbarre E, Ivanauskiene K, Küntziger T, Collas P (2013) DAXX-dependent supply of soluble (H3.3-H4) dimers to PML bodies pending deposition into chromatin. Genome Research

  • Denchi EL, Attwooll C, Pasini D, Helin K (2005) Deregulated E2F activity induces hyperplasia and senescence-like features in the mouse pituitary gland. Mol Cell Biol 25:2660–2672

    CAS  PubMed Central  Google Scholar 

  • Di Micco R, Fumagalli M, Cicalese A et al (2006) Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444:638–642

    PubMed  Google Scholar 

  • Di Micco R, Sulli G, Dobreva M et al (2011) Interplay between oncogene-induced DNA damage response and heterochromatin in senescence and cancer. Nat Cell Biol 13:292–302

    PubMed  PubMed Central  Google Scholar 

  • Dimri GP, Lee X, Basile G et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92:9363–9367

    PubMed  CAS  PubMed Central  Google Scholar 

  • Drane P, Ouararhni K, Depaux A et al (2010) The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev 24:1253–1265

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dreesen O, Chojnowski A, Ong PF et al (2013) Lamin B1 fluctuations have differential effects on cellular proliferation and senescence. J Cell Biol 200:605–617

    PubMed  CAS  PubMed Central  Google Scholar 

  • Enukashvily NI, Donev R, Waisertreiger ISR, Podgornaya OI (2007) Human chromosome 1 satellite 3 DNA is decondensed, demethylated and transcribed in senescent cells and in A431 epithelial carcinoma cells. Cytogenet Genome Res 118:42–54

    PubMed  CAS  Google Scholar 

  • Ferbeyre G, de Stanchina E, Querido E et al (2000) PML is induced by oncogenic ras and promotes premature senescence. Genes Dev 14:2015–2027

    PubMed  CAS  PubMed Central  Google Scholar 

  • Feser J, Truong D, Das C et al (2010) Elevated histone expression promotes life span extension. Mol Cell 39:724–735

    PubMed  CAS  PubMed Central  Google Scholar 

  • Filion GJ, van Bemmel JG, Braunschweig U et al (2010) Systematic protein location mapping reveals five principal chromatin types in drosophila cells. Cell 143:212–224

    PubMed  CAS  PubMed Central  Google Scholar 

  • Freund A, Laberge RM, Demaria M, Campisi J (2012) Lamin B1 loss is a senescence-associated biomarker. Mol Biol Cell 23:2066–2075

    PubMed  CAS  PubMed Central  Google Scholar 

  • Funayama R, Ishikawa F (2007) Cellular senescence and chromatin structure. Chromosoma 116:431–440

    PubMed  Google Scholar 

  • Funayama R, Saito M, Tanobe H, Ishikawa F (2006) Loss of linker histone H1 in cellular senescence. J Cell Biol 175:869–880

    PubMed  CAS  PubMed Central  Google Scholar 

  • Goldberg AD, Banaszynski LA, Noh K-M et al (2010) Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140:678–691

    PubMed  CAS  PubMed Central  Google Scholar 

  • Guelen L, Pagie L, Brasset E et al (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453:948–951

    PubMed  CAS  Google Scholar 

  • Hake SB, Garcia BA, Duncan EM et al (2006) Expression patterns and post-translational modifications associated with mammalian histone H3 variants. J Biol Chem 281:559–568

    PubMed  CAS  Google Scholar 

  • Hansen KD, Timp W, Bravo HC et al (2011) Increased methylation variation in epigenetic domains across cancer types. Nat Publ Group 43:768–775

    CAS  Google Scholar 

  • Hock R, Furusawa T, Ueda T, Bustin M (2007) HMG chromosomal proteins in development and disease. Trends Cell Biol 17:72–79

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ishov AM (2004) Heterochromatin and ND10 are cell-cycle regulated and phosphorylation-dependent alternate nuclear sites of the transcription repressor Daxx and SWI/SNF protein ATRX. J Cell Sci 117:3807–3820

    PubMed  CAS  Google Scholar 

  • Ivanov A, Pawlikowski J, Manoharan I et al (2013) Lysosome-mediated processing of chromatin in senescence. J Cell Biol 202:129–143

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jiang P, Du W, Mancuso A et al (2013) Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence. Nature 1–7

  • Jin C, Zang C, Wei G et al (2009) H3.3/H2A.Z double variant-containing nucleosomes mark “nucleosome-free regions” of active promoters and other regulatory regions. Nat Genet 41:941–945

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jones JYP, Jones PA (2012) Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell 22:9–20

    PubMed  PubMed Central  Google Scholar 

  • Kaplon J, Zheng L, Meissl K et al (2013) Kaplon 2013 pyruvate dehydrogenase senescence. Nature 498:109–112

    PubMed  CAS  Google Scholar 

  • Khuong-Quang D-A, Buczkowicz P, Rakopoulos P et al (2012) K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol 124:439–447

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kosar M, Bartkova J, Hubackova S et al (2011) Senescence-associated heterochromatin foci are dispensable for cellular senescence, occur in a cell type- and insult-dependent manner and follow expression of p16 ink4a. Cell Cycle 10:457–468

    PubMed  CAS  Google Scholar 

  • Kuilman T, Michaloglou C, Vredeveld LCW et al (2008) Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133:1019–1031

    PubMed  CAS  Google Scholar 

  • Kuilman T, Michaloglou C, Mooi WJ, Peeper DS (2010) The essence of senescence. Genes Dev 24:2463–2479

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kurz DJ, Decary S, Hong Y, Erusalimsky JD (2000) Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci 113(Pt 20):3613–3622

    PubMed  CAS  Google Scholar 

  • Lallemand-Breitenbach V, de The H (2010) PML nuclear bodies. Cold Spring Harb Perspect Biol 2, a000661

    PubMed  PubMed Central  Google Scholar 

  • Liu X, McEachron TA, Schwartzentruber J, Wu G (2014) Histone H3 mutations in pediatric brain tumors. Cold Spring Harb Perspect Biol 6, a018689

    PubMed  Google Scholar 

  • Loyola A, Bonaldi T, Roche D et al (2006) PTMs on H3 variants before chromatin assembly potentiate their final epigenetic state. Mol Cell 24:309–316

    PubMed  CAS  Google Scholar 

  • Luciani JJ (2006) PML nuclear bodies are highly organised DNA-protein structures with a function in heterochromatin remodelling at the G2 phase. J Cell Sci 119:2518–2531

    PubMed  CAS  Google Scholar 

  • Luger K, Dechassa ML, Tremethick DJ (2012) New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat Rev Mol Cell Biol 13:436–447

    PubMed  CAS  PubMed Central  Google Scholar 

  • Maehara K, Takahashi K, Saitoh S (2010) CENP-A reduction induces a p53-dependent cellular senescence response to protect cells from executing defective mitoses. Mol Cell Biol 30:2090–2104

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mallette FA, Gaumont-Leclerc M-F, Ferbeyre G (2007) The DNA damage signaling pathway is a critical mediator of oncogene-induced senescence. Genes Dev 21:43–48

    PubMed  CAS  PubMed Central  Google Scholar 

  • Martin N, Benhamed M, Nacerddine K et al (2011) Physical and functional interaction between PML and TBX2 in the establishment of cellular senescence. EMBO J 31:95–109

    PubMed  PubMed Central  Google Scholar 

  • Michaloglou C, Vredeveld LCW, Soengas MS et al (2005) BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nat Cell Biol 436:720–724

    CAS  Google Scholar 

  • Mito Y, Henikoff JG, Henikoff S (2005) Genome-scale profiling of histone H3.3 replacement patterns. Nat Genet 37:1090–1097

    PubMed  CAS  Google Scholar 

  • Muñoz-Espín D, Cañamero M, Maraver A et al (2013) Programmed cell senescence during mammalian embryonic development. Cell 155:1104–1118

    PubMed  Google Scholar 

  • Narita M, Nũnez S, Heard E et al (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113:703–716

    PubMed  CAS  Google Scholar 

  • Narita M, Narita M, Krizhanovsky V et al (2006) A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation. Cell 126:503–514

    PubMed  CAS  Google Scholar 

  • Ng RK, Gurdon JB (2007) Epigenetic memory of an active gene state depends on histone H3.3 incorporation into chromatin in the absence of transcription. Nat Cell Biol 10:102–109

    PubMed  Google Scholar 

  • O’Sullivan RJ, Karlseder J (2012) The great unravelling: chromatin as a modulator of the aging process. Trends Biochem Sci 37:466–476

    PubMed  PubMed Central  Google Scholar 

  • O’Sullivan RJ, Kubicek S, Schreiber SL, Karlseder J (2010) Reduced histone biosynthesis and chromatin changes arising from a damage signal at telomeres. Nat Struct Mol Biol 17:1218–1225

    PubMed  PubMed Central  Google Scholar 

  • Pearson M, Carbone R, Sebastiani C et al (2000) PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 406:207–210

    PubMed  CAS  Google Scholar 

  • Peric-Hupkes D, Meuleman W, Pagie L et al (2010) Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol Cell 38:603–613

    PubMed  CAS  Google Scholar 

  • Rai TS, Adams PD (2011) Lessons from senescence: chromatin maintenance in non-proliferating cells. BBA - Gene Regul Mech 1–10

  • Rai TS, Puri A, McBryan T et al (2011) Human CABIN1 is a functional member of the human HIRA/UBN1/ASF1a histone H3.3 chaperone complex. Mol Cell Biol 31:4107–4118

    PubMed  PubMed Central  Google Scholar 

  • Ratnakumar K, Duarte LF, LeRoy G et al (2012) ATRX-mediated chromatin association of histone variant macroH2A1 regulates globin expression. Genes Dev 26:433–438

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ray-Gallet D, Woolfe A, Vassias I et al (2011) Dynamics of histone H3 deposition in vivo reveal a nucleosome gap-filling mechanism for H3.3 to maintain chromatin integrity. Mol Cell 44:928–941

    PubMed  CAS  Google Scholar 

  • Reeves R (2001) Molecular biology of HMGA proteins: hubs of nuclear function. Gene 277:63–81

    PubMed  CAS  Google Scholar 

  • Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192:547–556

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rogakou EP, Sekeri-Pataryas KE (1999) Histone variants of H2A and H3 families are regulated during in vitro aging in the same manner as during differentiation. Exp Gerontol 34:741–754

    PubMed  CAS  Google Scholar 

  • Sadaie M, Salama R, Carroll T et al (2013) Redistribution of the Lamin B1 genomic binding profile affects rearrangement of heterochromatic domains and SAHF formation during senescence. Genes Dev 27:1800–1808

    PubMed  CAS  PubMed Central  Google Scholar 

  • Salama R, Sadaie M, Hoare M, Narita M (2014) Cellular senescence and its effector programs. Genes Dev 28:99–114

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schwartzentruber J, Korshunov A, Liu X-Y, et al. (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 1–7

  • Serrano M, Lin AW, McCurrach ME et al (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:593–602

    PubMed  CAS  Google Scholar 

  • Shah PP, Donahue G, Otte GL et al (2013) Lamin B1 depletion in senescent cells triggers large-scale changes in gene expression and the chromatin landscape. Genes Dev 27:1787–1799

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shimi T, Butin-Israeli V, Adam SA et al (2011) The role of nuclear lamin B1 in cell proliferation and senescence. Genes Dev 25:2579–2593

    PubMed  CAS  PubMed Central  Google Scholar 

  • Storer M, Mas A, Robert-Moreno A et al (2013) Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155:1119–1130

    PubMed  CAS  Google Scholar 

  • Sturm D, Witt H, Hovestadt V et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22:425–437

    PubMed  CAS  Google Scholar 

  • Suzuki T, Fujii M, Ayusawa D (2002) Demethylation of classical satellite 2 and 3 DNA with chromosomal instability in senescent human fibroblasts. Exp Gerontol 37:1005–1014

    PubMed  CAS  Google Scholar 

  • Talbert PB, Henikoff S (2010) Histone variants—ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol 11:264–275

    PubMed  CAS  Google Scholar 

  • Tilman G, Arnoult N, Lenglez S et al (2012) Cancer-linked satellite 2 DNA hypomethylation does not regulate Sat2 non-coding RNA expression and is initiated by heat shock pathway activation. Epigenetics 7:903–913

    PubMed  CAS  PubMed Central  Google Scholar 

  • Toyama BH, Savas JN, Park SK et al (2013) Identification of long-lived proteins reveals exceptional stability of essential cellular structures. Cell 154:971–982

    PubMed  CAS  PubMed Central  Google Scholar 

  • Vernier M, Bourdeau V, Gaumont-Leclerc M-F et al (2011) Regulation of E2Fs and senescence by PML nuclear bodies. Genes Dev 25:41–50

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wen H, Li Y, Xi Y et al (2014) Wen 2014 ZMYD recognizes H3.3K36me3. Nature 508:263–268

    PubMed  CAS  Google Scholar 

  • Weyemi U, Lagente-Chevallier O, Boufraqech M et al (2011) ROS-generating NADPH oxidase NOX4 is a critical mediator in oncogenic H-Ras-induced DNA damage and subsequent senescence. Oncogene 31:1117–1129

    PubMed  PubMed Central  Google Scholar 

  • Wilson VL, Jones PA (1983) DNA methylation decreases in aging but not in immortal cells. Science 220:1055–1057

    PubMed  CAS  Google Scholar 

  • Wirbelauer C (2005) Variant histone H3.3 is deposited at sites of nucleosomal displacement throughout transcribed genes while active histone modifications show a promoter-proximal bias. Genes Dev 19:1761–1766

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wong LH, Ren H, Williams E et al (2008) Histone H3.3 incorporation provides a unique and functionally essential telomeric chromatin in embryonic stem cells. Genome Res 19:404–414

    Google Scholar 

  • Wu GW, Broniscer A et al (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Publ Group 1–3

  • Xue Y, Gibbons R, Yan Z et al (2003) The ATRX syndrome protein forms a chromatin-remodeling complex with Daxx and localizes in promyelocytic leukemia nuclear bodies. Proc Natl Acad Sci U S A 100:10635–10640

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ye X, Zerlanko B, Zhang R et al (2007) Definition of pRB- and p53-dependent and -independent steps in HIRA/ASF1a-mediated formation of senescence-associated heterochromatin foci. Mol Cell Biol 27:2452–2465

    PubMed  CAS  PubMed Central  Google Scholar 

  • Young JI (2001) DNA methyltransferase inhibition in normal human fibroblasts induces a p21-dependent cell cycle withdrawal. J Biol Chem 276:19610–19616

    PubMed  CAS  Google Scholar 

  • Young JI (2003) Telomerase expression in normal human fibroblasts stabilizes DNA 5-methylcytosine transferase I. J Biol Chem 278:19904–19908

    PubMed  CAS  Google Scholar 

  • Young ARJ, Narita M, Ferreira M et al (2009) Autophagy mediates the mitotic senescence transition. Genes Dev 23:798–803

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang R, Poustovoitov MV, Ye X et al (2005) Formation of macroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev Cell 8:19–30

    PubMed  CAS  Google Scholar 

  • Zhang R, Chen W, Adams PD (2007a) Molecular dissection of formation of senescence-associated heterochromatin foci. Mol Cell Biol 27:2343–2358

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang R, Liu S-T, Chen W et al (2007b) HP1 proteins are essential for a dynamic nuclear response that rescues the function of perturbed heterochromatin in primary human cells. Mol Cell Biol 27:949–962

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang W, Ji W, Yang J et al (2008) Comparison of global DNA methylation profiles in replicative versus premature senescence. Life Sci 83:475–480

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank all members of the Department of Gynecology of the University Hospital Zürich for the help and discussion. We apologize to the authors whose work could not be cited owing to space limitations. This work was supported by grants from the Swiss National Foundation (project grant 31003A-127450 to MS and Marie-Heim Vögtlin grant PMPDP3_139706 to AC) and by the Kanton of Zürich.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Stucki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corpet, A., Stucki, M. Chromatin maintenance and dynamics in senescence: a spotlight on SAHF formation and the epigenome of senescent cells. Chromosoma 123, 423–436 (2014). https://doi.org/10.1007/s00412-014-0469-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-014-0469-6

Keywords

Navigation