Skip to main content

Advertisement

Log in

DNA double-strand breaks: linking gene expression to chromosome morphology and mobility

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Ionizing radiation can lead to DNA double-strand breaks (DSBs) which belong to the most dangerous forms of damage to the DNA. Cells possess elaborate repair mechanisms and react in a complex manner to the emergence of DSBs. Experiments have shown that gene expression levels in irradiated cells are changed, and thousands of radiation-responsive genes have been identified. On the other hand, recent studies have shown that gene expression is tightly connected to the three-dimensional organization of the genome. In this work, we analyzed the chromatin organization in the cell nuclei before and after exposure to ionizing radiation with an expression-dependent folding model. Our results indicate that the alteration of the chromosome organization on the scale of a complete chromosome is rather limited despite the expression level change of a large number of genes. We further modelled breaks within sub-compartments of the model chromosomes and showed that entropic changes caused by a break lead to increased mobility of the break sites and help to locate break ends further to the periphery of the sub-compartments. We conclude that the changes in the chromatin structure after irradiation are limited to local scales and demonstrate the importance of entropy for the behaviour of break ends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amundson SA, Do KT, Vinikoor LC, Lee RA, Koch-Paiz CA, Ahn J, Reimers M, Chen Y, Scudiero DA, Weinstein JN, Trent JM, Bittner ML, Meltzer PS, Fornace AJ Jr (2008) Integrating globalgene expression and radiation survival parameters across the 60 cell lines of the national cancer institute anticancer drug screen. Cancer Res 68(2):415–424

    Article  PubMed  CAS  Google Scholar 

  • Aten JA, Stap J, Krawczyk PM, van Oven CH, Hoebe RA, Essers J, Kanaar R (2004) Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains. Science 303(5654):92–95

    Article  PubMed  CAS  Google Scholar 

  • Bancaud A, Huet S, Daigle N, Mozziconacci J, Beaudouin J, Ellenberg J (2009) Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin. EMBO J 28(24):37853798

    Article  CAS  Google Scholar 

  • Barbieri M, Chotalia M, Fraser J, Lavitas L-M, Dostie J, Pombo A, Nicodemi M (2012) Complexity of chromatin folding is captured by the strings and binders switch model. Proc Natl Acad Sci U S A 109(40):16173–16178

    Article  PubMed Central  PubMed  Google Scholar 

  • Bewersdorf J, Bennett B, Knight K (2006) H2AX chromatin structures and their response to DNA damage revealed by 4Pi microscopy. Proc Natl Acad Sci U S A 103(48):18137–18142

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bohn M, Heermann DW (2010a) Diffusion-driven looping provides a consistent framework for chromatin organization. PLoS One 5(8):e12218

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bohn M, Heermann DW (2010b) Topological interactions between ring polymers: implications for chromatin loops. J Chem Phys 132(4):044904

    Article  PubMed  CAS  Google Scholar 

  • Bohn M, Heermann DW (2011) Repulsive forces between looping chromosomes induce entropy-driven segregation. PLoS One 6(1):e14428

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Carmesin I, Kremer K (1988) The bond fluctuation method: a new effective algorithm for the dynamics of polymers in all spatial dimensions. Macromolecules 21(9):2819–2823

    Article  CAS  Google Scholar 

  • Chiolo I, Minoda A, Colmenares SU, Polyzos A, Costes SV, Karpen GH (2011) Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair. Cell 144(5):732–744

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cook PR (2010) A model for all genomes: the role of transcription factories. J Mol Biol 395(1):1–10

    Article  PubMed  CAS  Google Scholar 

  • Cook P, Marenduzzo D (2009) Entropic organization of interphase chromosomes. J Cell Biol 186(6):825–834

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Correa CR, Cheung VG (2004) Genetic variation in radiation-induced expression phenotypes. Am J Hum Genet 75(5):885–890

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Costes SV, Chiolo I, Pluth JM, Barcellos-Hoff MH, Jakob B (2010) Spatiotemporal characterization of ionizing radiation induced DNA damage foci and their relation to chromatin organization. Mutat Res 704(1–3):7887

    Google Scholar 

  • Cowell IG, Sunter NJ, Singh PB, Austin CA, Durkacz BW, Tilby MJ (2007) gammaH2AX foci form preferentially in euchromatin after ionising-radiation. PLoS One 2(10):e1057

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cox MM, Battista JR (2005) Deinococcus radiodurans - the consummate survivor. Nat Rev Microbiol 3(11):882–92

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2(4):292–301

    Article  PubMed  CAS  Google Scholar 

  • Dasika GK, Lin SC, Zhao S, Sung P, Tomkinson A, Lee EY (1999) DNA damage-induced cell cycle checkpoints and DNA strand break repair in development and tumorigenesis. Oncogene 18(55):7883–99

    Article  PubMed  CAS  Google Scholar 

  • de Nooijer S, Wellink J, Mulder B, Bisseling T (2009) Non-specific interactions are sufficient to explain the position of heterochromatic chromocenters and nucleoli in interphase nuclei. Nucleic Acids Res 37(11):3558–3568

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dekker J (2008) Gene regulation in the third dimension. Science 319(5871):1793–1794

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295(5558):1306–1311

    Article  PubMed  CAS  Google Scholar 

  • Deutsch H, Binder K (1991) Interdiffusion and self-diffusion in polymer mixtures: a Monte Carlo Study. J Chem Phys 94(3):2294–2304

    Article  CAS  Google Scholar 

  • Dion V, Kalck V, Horigome C, Towbin BD, Gasser SM (2012) Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery. Nat Cell Biol 14(5):502–509

    Article  PubMed  CAS  Google Scholar 

  • Downs J, Nussenzweig M, Nussenzweig A (2007) Chromatin dynamics and the preservation of genetic information. Nature 447(7147):951–958

    Article  PubMed  CAS  Google Scholar 

  • Finan K, Cook PR, Marenduzzo D (2011) Non-specific (entropic) forces as major determinants of the structure of mammalian chromosomes. Chromosome Res 19(1):53–61

    Article  PubMed  CAS  Google Scholar 

  • Goetze S, Mateos-Langerak J, Gierman HJ, Leeuw WD, Giromus O, Indemans MHG, Koster J, Ondrej V, Versteeg R, Driel RV (2007) The three-dimensional structure of human interphase chromosomes is related to the transcriptome map. Mol Cell Biol 27(12):44754487

    Article  CAS  Google Scholar 

  • Grenon M, Gilbert C, Lowndes NF (2001) Checkpoint activation in response to double-strand breaks requires the Mre11/Rad50/Xrs2 complex. Nat Cell Biol 3(9):844–7

    Article  PubMed  CAS  Google Scholar 

  • Grosberg A, Chochlov AR (1994) Statistical physics of macromolecules. AIP series in polymers and complex materials. American Institute of Physics, New York

    Google Scholar 

  • Haffner MC, Aryee MJ, Toubaji A, Esopi DM, Albadine R, Gurel B, Isaacs WB, Bova GS, Liu W, Xu J, Meeker AK, Netto G, De Marzo AM, Nelson WG, Yegnasubramanian S (2010) Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nat Genet 42(8):668–675

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Haffner MC, De Marzo AM, Meeker AK, Nelson WG, Yegnasubramanian S (2011) Transcription-induced DNA double strand breaks: both oncogenic force and potential therapeutic target? Clin Cancer Res 17(12):3858–3864

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hou C, Corces VG (2012) Throwing transcription for a loop: expression of the genome in the 3D nucleus. Chromosoma 121(2):107–116

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jakob B, Splinter J, Conrad S, Voss K-O, Zink D, Durante M, Löbrich M, Taucher-Scholz G (2011) DNA double-strand breaks in heterochromatin elicit fast repair protein recruitment, histone H2AX phosphorylation and relocation to euchromatin. Nucleic Acids Res 39(15):6489–6499

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jerabek H, Heermann DW (2012) Expression-dependent folding of interphase chromatin. PLoS One 7(5):e37525

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ju B-G, Lunyak VV, Perissi V, Garcia-Bassets I, Rose DW, Glass CK, Rosenfeld MG (2006) A topoisomerase IIbeta-mediated dsDNA break required for regulated transcription. Science 312(5781):1798–1802

    Article  PubMed  CAS  Google Scholar 

  • Junier I, Martin O, Kps F (2010) Spatial and topological organization of DNA chains induced by gene co-localization. PLoS Comput Biol 6(2):e1000678

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Junier I, Dale RK, Hou C, Képès F, Dean A (2012) CTCF-mediated transcriptional regulation through cell type-specific chromosome organization in the β-globin locus. Nucleic Acids Res 40(16):7718–27

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kabacik S, Mackay A, Tamber N, Manning G, Finnon P, Paillier F, Ashworth A, Bouffler S, Badie C (2011) Gene expression following ionising radiation: identification of biomarkers for dose estimation and prediction of individual response. Int J Radiat Biol 87(2):115–29

    Article  PubMed  CAS  Google Scholar 

  • Kinner A, Wu W, Staudt C, Iliakis G (2008) Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res 36(17):56785694

    Article  CAS  Google Scholar 

  • Krawczyk PM, Borovski T, Stap J, Cijsouw A, ten Cate R, Medema JP, Kanaar R, Franken NAP, Aten JA (2012) Chromatin mobility is increased at sites of DNA double-strand breaks. J Cell Sci 125(Pt 9):2127–33

    Article  PubMed  CAS  Google Scholar 

  • Kremer K, Grest GS (1990) Dynamics of entangled linear polymer melts: a molecular dynamics simulation. J Chem Phys 92(8):5057–5086

    Article  CAS  Google Scholar 

  • Kruhlak M, Celeste A, Dellaire G, Fernandez-Capetillo O, Müller W, McNally J, Bazett-Jones D, Nussenzweig A (2006) Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks. J Cell Biol 172(6):823–834

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lee J-H, Paull TT (2005) ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 308(5721):551554

    Article  CAS  Google Scholar 

  • Levin-Zaidman S, Englander J, Shimoni E, Sharma AK, Minton KW, Minsky A (2003) Ringlike structure of the Deinococcus radiodurans genome: a key to radioresistance? Science 299(5604):254–6

    Article  PubMed  CAS  Google Scholar 

  • Lieberman-Aiden E, van Berkum N, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie B, Sabo P, Dorschner M, Sandstrom R, Bernstein B, Bender M, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny L, Lander E, Dekker J (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289–293

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Limbach H, Arnold A, Mann B, Holm C (2006) ESPResSo - an extensible simulation package for research on soft matter systems. Comput Phys Commun 174(9):704–727

    Article  CAS  Google Scholar 

  • Lukas C, Falck J, Bartkova J, Bartek J, Lukas J (2003) Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage. Nat Cell Biol 5(3):255–260

    Article  PubMed  CAS  Google Scholar 

  • Mateos-Langerak J, Bohn M, Leeuw WD, Giromus O, Manders EMM, Verschure PJ, Indemans MHG, Gierman HJ, Heermann DW, Driel RV, Goetze S (2009) Spatially conned folding of chromatin in the interphase nucleus. Proc Natl Acad Sci U S A 106(10):38123817

    Article  Google Scholar 

  • Mezentsev A, Amundson SA (2011) Global gene expression responses to low- or high-dose radiation in a human three-dimensional tissue model. Radiat Res 175:677–688

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mills KD, Ferguson DO, Alt FW (2003) The role of DNA breaks in genomic instability and tumorigenesis. Immunol Rev 194:7795

    Article  Google Scholar 

  • Min-Hattab J, Rothstein R (2012) Increased chromosome mobility facilitates homology search during recombination. Nat Cell Biol 14(5):510–517

    Article  CAS  Google Scholar 

  • Münkel C, Eils R, Dietzel S, Zink D, Mehring C, Wedemann G, Cremer T, Langowski J (1999) Compartmentalization of interphase chromosomes observed in simulation and experiment. J Mol Biol 285(3):1053–1065

    Article  PubMed  Google Scholar 

  • Noordermeer D, de Laat W (2008) Joining the loops: beta-globin gene regulation. IUBMB Life 60(12):824–33

    Article  PubMed  CAS  Google Scholar 

  • Oza P, Jaspersen SL, Miele A, Dekker J, Peterson CL (2009) Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery. Genes Dev 23(8):912927

    Article  CAS  Google Scholar 

  • Rogakou E, Pilch D, Orr A, Ivanova V, Bonner W (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273(10):5858–5868

    Article  PubMed  CAS  Google Scholar 

  • Sachs RK, van den Engh G, Trask B, Yokota H, Hearst JE (1995) A random-walk/giant-loop model for interphase chromosomes. Proc Natl Acad Sci U S A 92(7):2710–2714

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schoenfelder S, Sexton T, Chakalova L, Cope NF, Horton A, Andrews S, Kurukuti S, Mitchell JA, Umlauf D, Dimitrova DS, Eskiw CH, Luo Y, Wei C-L, Ruan Y, Bieker JJ, Fraser P (2010) Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat Genet 42(1):53–61

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de Wit E, van Steensel B, de Laat W (2006) Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet 38(11):1348–1354

    Article  PubMed  CAS  Google Scholar 

  • Slade D, Lindner AB, Paul G, Radman M (2009) Recombination and replication in DNA repair of heavily irradiated Deinococcus radiodurans. Cell 136(6):1044–55

    Article  PubMed  CAS  Google Scholar 

  • Smirnov DA, Morley M, Shin E, Spielman RS, Cheung VG (2009) Genetic analysis of radiation-induced changes in human gene expression. Nature 459(7246):587591

    Article  CAS  Google Scholar 

  • Soutoglou E, Misteli T (2007) Mobility and immobility of chromatin in transcription and genome stability. Curr Op Genet Dev 17:435–442

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Soutoglou E, Dorn JF, Sengupta K, Jasin M, Nussenzweig A, Ried T, Danuser G, Misteli T (2007) Positional stability of single double strand breaks in mammalian cells. Nat Cell Biol 9(6):675–682

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vasireddy R, Karagiannis T, El-Osta A (2010) Gamma-radiation-induced gammaH2AX formation occurs preferentially in actively transcribing euchromatic loci. Cell Mol Life Sci 67(2):291–294

    Article  PubMed  CAS  Google Scholar 

  • Versteeg R, van Schaik BDC, van Batenburg MF, Roos M, Monajemi R, Caron H, Bussemaker HJ, van Kampen AHC (2003) The human transcriptome map reveals extremes in gene density, intron length, GC content, and repeat pattern for domains of highly and weakly expressed genes. Genome Res 13(9):1998–2004

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Weeks JD, Chandler D, Andersen HC (1971) Role of repulsive forces in determining the equilibrium structure of simple liquids. J Chem Phys 54(12):5237–5247

    Article  CAS  Google Scholar 

  • Woodbine L, Brunton H, Goodarzi AA, Shibata A, Jeggo PA (2011) Endogenously induced DNA double strand breaks arise in heterochromatic DNA regions and require ataxia telangiectasia mutated and Artemis for their repair. Nucleic Acids Res 39(16):6986–6997

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Woodcock CL, Ghosh RP (2010) Chromatin higher-order structure and dynamics. Cold Spring Harb Perspect Biol 2(5):a000596

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Xu M, Cook PR (2008) Similar active genes cluster in specialized transcription factories. J Cell Biol 181(4):615–623

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang Y, Heermann DW (2011) Loops determine the mechanical properties of mitotic chromosomes. PLoS One 6(12):e29225

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Frederik Wenz, Jürgen Hesser, Carsten Herskind, Michael Hausmann and Hansjörg Jerabek for the fruitful discussions. YZ gratefully appreciates funding from the German National Academic Foundation (Studienstiftung des Deutschen Volkes) and support from the Heidelberg Graduate School for Mathematical and Computational Methods in the Sciences (HGS MathComp). Computer simulations were performed on bwGRiD (http://www.bw-grid.de), member of the German D-Grid initiative, funded by the Ministry for Education and Research (Bundesministerium für Bildung und Forschung) and the Ministry for Science, Research and Arts Baden-Wuerttemberg (Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 149 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Heermann, D.W. DNA double-strand breaks: linking gene expression to chromosome morphology and mobility. Chromosoma 123, 103–115 (2014). https://doi.org/10.1007/s00412-013-0432-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-013-0432-y

Keywords

Navigation