Skip to main content
Log in

Abnormal mitosis triggers p53-dependent cell cycle arrest in human tetraploid cells

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Erroneously arising tetraploid mammalian cells are chromosomally instable and may facilitate cell transformation. An increasing body of evidence shows that the propagation of mammalian tetraploid cells is limited by a p53-dependent arrest. The trigger of this arrest has not been identified so far. Here we show by live cell imaging of tetraploid cells generated by an induced cytokinesis failure that most tetraploids arrest and die in a p53-dependent manner after the first tetraploid mitosis. Furthermore, we found that the main trigger is a mitotic defect, in particular, chromosome missegregation during bipolar mitosis or spindle multipolarity. Both a transient multipolar spindle followed by efficient clustering in anaphase as well as a multipolar spindle followed by multipolar mitosis inhibited subsequent proliferation to a similar degree. We found that the tetraploid cells did not accumulate double-strand breaks that could cause the cell cycle arrest after tetraploid mitosis. In contrast, tetraploid cells showed increased levels of oxidative DNA damage coinciding with the p53 activation. To further elucidate the pathways involved in the proliferation control of tetraploid cells, we knocked down specific kinases that had been previously linked to the cell cycle arrest and p53 phosphorylation. Our results suggest that the checkpoint kinase ATM phosphorylates p53 in tetraploid cells after abnormal mitosis and thus contributes to proliferation control of human aberrantly arising tetraploids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andreassen PR, Martineau SPN, Margolis RL (1996) Chemical induction of mitotic checkpoint override in mammalian cells results in aneuploidy following a transient tetraploid state. Mutat Res Fundam Mol Mech Mutagen 372:181–194

    Article  CAS  Google Scholar 

  • Andreassen PR, Lohez OD, Lacroix FB, Margolis RL (2001) Tetraploid state induces p53-dependent arrest of nontransformed mammalian cells in G1. Mol Biol Cell 12:1315–1328

    Article  PubMed  CAS  Google Scholar 

  • Blagosklonny MV (2006) Prolonged mitosis versus tetraploid checkpoint: how p53 measures the duration of mitosis. Cell Cycle 5:971–975

    Article  PubMed  CAS  Google Scholar 

  • Borel F, Lohez OD, Lacroix FB, Margolis RL (2002) Multiple centrosomes arise from tetraploidy checkpoint failure and mitotic centrosome clusters in p53 and RB pocket protein-compromised cells. Proc Natl Acad Sci U S A 99:9819–9824

    Article  PubMed  CAS  Google Scholar 

  • Bulavin DV, Saito S, Hollander MC, Sakaguchi K, Anderson CW, Appella E, Fornace AJ (1999) Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J 18:6845–6854

    Article  PubMed  CAS  Google Scholar 

  • Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J, Golland P, Sabatini DM (2006) Cell Profiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7:R100

    Article  PubMed  Google Scholar 

  • Castedo M, Coquelle A, Vivet S, Vitale I, Kauffmann A, Dessen P, Pequignot MO, Casares N, Valent A, Mouhamad S, Schmitt E, Modjtahedi N, Vainchenker W, Zitvogel L, Lazar V, Garrido C, Kroemer G (2006) Apoptosis regulation in tetraploid cancer cells. EMBO J 25:2584–2595

    Article  PubMed  CAS  Google Scholar 

  • Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6:836–846

    Article  PubMed  CAS  Google Scholar 

  • Crasta K, Ganem NJ, Dagher R, Lantermann AB, Ivanova EV, Pan Y, Nezi L, Protopopov A, Chowdhury D, Pellman D (2012) DNA breaks and chromosome pulverization from errors in mitosis. Nature 482:53–58

    Article  PubMed  CAS  Google Scholar 

  • Dalton WB, Yu B, Yang VW (2010) p53 suppresses structural chromosome instability after mitotic arrest in human cells. Oncogene 29:1929–1940

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara T, Bandi M, Nitta M, Ivanova EV, Bronson RT, Pellman D (2005) Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437:1043–1047

    Article  PubMed  CAS  Google Scholar 

  • Galipeau PC, Li X, Blount PL, Maley CC, Sanchez CA, Odze RD, Ayub K, Rabinovitch PS, Vaughan TL, Reid BJ (2007) NSAIDs Modulate CDKN2A, TP53 and DNA content risk for progression to esophageal adenocarcinoma. PLoS Med 4:e67

    Article  PubMed  Google Scholar 

  • Ganem NJ, Pellman D (2007) Limiting the proliferation of polyploid cells. Cell 131:437–440

    Article  PubMed  CAS  Google Scholar 

  • Ganem NJ, Godinho SA, Pellman D (2009) A mechanism linking extra centrosomes to chromosomal instability. Nature 460:278–282

    Article  PubMed  CAS  Google Scholar 

  • Gehen SC, Staversky RJ, Bambara RA, Keng PC, O’Reilly MA (2008) hSMG-1 and ATM sequentially and independently regulate the G1 checkpoint during oxidative stress. Oncogene 27:4065–4074

    Article  PubMed  CAS  Google Scholar 

  • Guerrero AA, Gamero MC, Trachana V, Futterer A, Pacios-Bras C, Diaz-Concha NP, Cigudosa JC, Martinez-A C, van Wely KHM (2010) Centromere-localized breaks indicate the generation of DNA damage by the mitotic spindle. Proc Natl Acad Sci U S A 107:4159–4164

    Article  PubMed  CAS  Google Scholar 

  • Guidotti J-E, Bregerie O, Robert A, Debey P, Brechot C, Desdouets C (2003) Liver cell polyploidization: a pivotal role for binuclear hepatocytes. J Biol Chem 278:19095–19101

    Article  PubMed  CAS  Google Scholar 

  • Guo Z, Kozlov S, Lavin MF, Person MD, Paull TT (2010) ATM activation by oxidative stress. Science 330:517–521

    Article  PubMed  CAS  Google Scholar 

  • Hassold T, Hall H, Hunt P (2007) The origin of human aneuploidy: where we have been, where we are going. Hum Mol Genet 16:R203–R208

    Article  PubMed  CAS  Google Scholar 

  • Janssen A, van der Burg M, Szuhai K, Kops GJ, Medema RH (2011) Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science 333:1895–1898

    Article  PubMed  CAS  Google Scholar 

  • Krastev DB, Slabicki M, Paszkowski-Rogacz M, Hubner NC, Junqueira M, Shevchenko A, Mann M, Neugebauer KM, Buchholz F (2011) A systematic RNAi synthetic interaction screen reveals a link between p53 and snoRNP assembly. Nat Cell Biol 13:809–818

    Article  PubMed  CAS  Google Scholar 

  • Krzywicka-Racka A, Sluder G (2011) Repeated cleavage failure does not establish centrosome amplification in untransformed human cells. J Cell Biol 194:199–207

    Article  PubMed  CAS  Google Scholar 

  • Kwon M, Godinho SA, Chandhok NS, Ganem NJ, Azioune A, Thery M, Pellman D (2008) Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev 22:2189–2203

    Article  PubMed  CAS  Google Scholar 

  • Ladenstein R, Ambros IM, Potschger U, Amann G, Urban C, Fink FM, Schmitt K, Jones R, Slociak M, Schilling F, Ritter J, Berthold F, Gadner H, Ambros PF (2001) Prognostic significance of DNA di-tetraploidy in neuroblastoma. Med Pediatr Oncol 36:83–92

    Article  PubMed  CAS  Google Scholar 

  • Lanni JS, Jacks T (1998) Characterization of the p53-dependent postmitotic checkpoint following spindle disruption. Mol Cell Biol 18:1055–1064

    PubMed  CAS  Google Scholar 

  • Li M, Fang X, Baker DJ, Guo L, Gao X, Wei Z, Han S, van Deursen JM, Zhang P (2010) The ATM-p53 pathway suppresses aneuploidy-induced tumorigenesis. Proc Natl Acad Sci U S A 107:14188–14193

    Article  PubMed  CAS  Google Scholar 

  • Mayer VW, Aguilera A (1990) High levels of chromosome instability in polyploids of Saccharomyces cerevisiae. Mutat Res 231:177–186

    Article  PubMed  CAS  Google Scholar 

  • Meraldi P, Honda R, Nigg EA (2002) Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53-/- cells. EMBO J 21:483–492

    Article  PubMed  CAS  Google Scholar 

  • Mikule K, Delaval B, Kaldis P, Jurcyzk A, Hergert P, Doxsey S (2007) Loss of centrosome integrity induces p38-p53-p21-dependent G1-S arrest. Nat Cell Biol 9:160–170

    Article  PubMed  CAS  Google Scholar 

  • Olaharski AJ, Sotelo R, Solorza-Luna G, Gonsebatt ME, Guzman P, Mohar A, Eastmond DA (2006) Tetraploidy and chromosomal instability are early events during cervical carcinogenesis. Carcinogenesis 27:337–343

    Article  PubMed  CAS  Google Scholar 

  • Oromendia AB, Dodgson SE, Amon A (2012) Aneuploidy causes proteotoxic stress in yeast. Genes Dev 26:2696–2708

    Article  PubMed  CAS  Google Scholar 

  • Shackney SE, Smith CA, Miller BW, Burholt DR, Murtha K, Giles HR, Ketterer DM, Pollice AA (1989) Model for the genetic evolution of human solid tumors. Cancer Res 49:3344–3354

    PubMed  CAS  Google Scholar 

  • Shi Q, King RW (2005) Chromosome nondisjunction yields tetraploid rather than aneuploid cells in human cell lines. Nature 437:1038–1042. doi:10.1371/journal.pone.0006564, 2009 Aug 10;4(8):e6564

    Article  PubMed  CAS  Google Scholar 

  • Silkworth WT, Nardi IK, Scholl LM, Cimini D (2009) Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells. PLoS One 10:e6564

    Article  Google Scholar 

  • Stingele S, Stoehr G, Peplowska K, Cox J, Mann M, Storchova Z (2012) Global analysis of genome, transcriptome and proteome reveals the response to aneuploidy in human cells. Mol Syst Biol 8:608

    Article  PubMed  CAS  Google Scholar 

  • Stolz A, Ertych N, Kienitz A, Vogel C, Schneider V, Fritz B, Jacob R, Dittmar G, Weichert W, Petersen I, Bastians H (2010) The CHK2-BRCA1 tumour suppressor pathway ensures chromosomal stability in human somatic cells. Nat Cell Biol 12:492–499

    Article  PubMed  CAS  Google Scholar 

  • Storchova Z, Kuffer C (2008) The consequences of tetraploidy and aneuploidy. J Cell Sci 121:3859–3866

    Article  PubMed  CAS  Google Scholar 

  • Storchova Z, Breneman A, Cande J, Dunn J, Burbank K, O’Toole E, Pellman D (2006) Genome-wide genetic analysis of polyploidy in yeast. Nature 443:541–547

    Article  PubMed  CAS  Google Scholar 

  • Thompson SL, Compton DA (2010) Proliferation of aneuploid human cells is limited by a p53-dependent mechanism. J Cell Biol 188:369–381

    Article  PubMed  CAS  Google Scholar 

  • Torres EM, Williams BR, Tang YC, Amon A (2010) Thoughts on aneuploidy. Cold Spring Harb Symp Quant Biol 75:445–451

    Article  PubMed  CAS  Google Scholar 

  • Uetake Y, Sluder G (2004) Cell cycle progression after cleavage failure: mammalian somatic cells do not possess a “tetraploidy checkpoint”. J Cell Biol 165:609–615

    Article  PubMed  CAS  Google Scholar 

  • Uetake Y, Sluder G (2011) Prolonged prometaphase blocks daughter cell proliferation despite normal completion of mitosis. Curr Biol 20:1666–1671

    Article  Google Scholar 

  • Vitale I, Galluzzi L, Vivet S, Nanty L, Dessen P, Senovilla L, Olaussen KA, Lazar V, Prudhomme M, Golsteyn RM, Castedo M, Kroemer G (2007) Inhibition of Chk1 kills tetraploid tumor cells through a p53-dependent pathway. PLoS One 2:e1337

    Article  PubMed  Google Scholar 

  • Vitale I, Jemaa M, Senovilla L, Galluzzi L, Rello-Varona S, Meivier D, Ripoche H, Lazar V, Dessen P, Castedo M, Kroemer G (2010a) Involvement of p38a in the mitotic progression of p53 -/- tetraploid cells. Cell Cycle 9:2823–2829

    Article  PubMed  CAS  Google Scholar 

  • Vitale I, Senovilla L, Jemaa M, Michaud M, Galluzzi L, Kepp O, Nanty L, Criollo A, Rello-Varona S, Manic G, Metivier D, Vivet S, Tajeddine N, Joza N, Valent A, Castedo M, Kroemer G (2010b) Multipolar mitosis of tetraploid cells: inhibition by p53 and dependency on Mos. EMBO J 29:1272–1284

    Article  PubMed  CAS  Google Scholar 

  • Wong C, Stearns T (2005) Mammalian cells lack checkpoints for tetraploidy, aberrant centrosome number, and cytokinesis failure. BMC Cell Biol 6:6

    Article  PubMed  Google Scholar 

  • Yang Z, Loncarek J, Khodjakov A, Rieder CL (2008) Extra centrosomes and/or chromosomes prolong mitosis in human cells. Nat Cell Biol 10:748–751

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to Steven Taylor for providing the RPE1 cells stably transfected with H2B–GFP. We thank Tom Gaitanos, Steven Bergink, and Sabine Elowe for their helpful comments on the manuscript. We are thankful to Aline Sewo Pires de Campos, Susanne Gutmann, Daniela Fellner, and Miriam Penka for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuzana Storchová.

Additional information

Communicated by Erich Nigg

Electronic supplementary material

ESM 1

(AI 2004 kb)

ESM 2

(AI 1597 kb)

ESM 3

(AI 2893 kb)

ESM 4

(AI 3258 kb)

ESM 5

(AI 1391 kb)

ESM 6

(AI 434 kb)

ESM 7

(AI 1323 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuffer, C., Kuznetsova, A.Y. & Storchová, Z. Abnormal mitosis triggers p53-dependent cell cycle arrest in human tetraploid cells. Chromosoma 122, 305–318 (2013). https://doi.org/10.1007/s00412-013-0414-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-013-0414-0

Keywords

Navigation