Skip to main content
Log in

Evolution of DUX gene macrosatellites in placental mammals

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Macrosatellites are large polymorphic tandem arrays. The human subtelomeric macrosatellite D4Z4 has 11–150 repeats, each containing a copy of the intronless DUX4 gene. DUX4 is linked to facioscapulohumeral muscular dystrophy, but its normal function is unknown. The DUX gene family includes DUX4, the intronless Dux macrosatellites in rat and mouse, as well as several intron-containing members (DUXA, DUXB, Duxbl, and DUXC). Here, we report that the genomic organization (though not the syntenic location) of primate DUX4 is conserved in the Afrotheria. In primates and Afrotheria, DUX4 arose by retrotransposition of an ancestral intron-containing DUXC, which is itself not found in these species. Surprisingly, we discovered a similar macrosatellite organization for DUXC in cow and other Laurasiatheria (dog, alpaca, dolphin, pig, and horse), and in Xenarthra (sloth). Therefore, DUX4 and Dux are not the only DUX gene macrosatellites. Our data suggest a new retrotransposition-displacement model for the evolution of intronless DUX macrosatellites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alkan C, Kidd JM, Marques-Bonet T, Aksay G, Antonacci F, Hormozdiari F, Kitzman JO, Baker C, Malig M, Mutlu O, Sahinalp SC, Gibbs RA, Eichler EE (2009) Personalized copy number and segmental duplication maps using next-generation sequencing. Nat Genet 41(10):1061–1067. doi:10.1038/ng.437

    Article  PubMed  CAS  Google Scholar 

  • Alkan C, Sajjadian S, Eichler EE (2011) Limitations of next-generation genome sequence assembly. Nat Methods 8(1):61–65. doi:10.1038/nmeth.1527

    Article  PubMed  CAS  Google Scholar 

  • Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27(2):573–580

    Article  PubMed  CAS  Google Scholar 

  • Clapp J, Mitchell LM, Bolland DJ, Fantes J, Corcoran AE, Scotting PJ, Armour JAL, Hewitt JE (2007) Evolutionary conservation of a coding function for D4Z4, the tandem DNA repeat mutated in facioscapulohumeral muscular dystrophy. Am J Hum Genet 81(2):264–279. doi:10.1086/519311

    Article  PubMed  CAS  Google Scholar 

  • Clark LN, Koehler U, Ward DC, Wienberg J, Hewitt JE (1996) Analysis of the organisation and localisation of the FSHD-associated tandem array in primates: implications for the origin and evolution of the 3.3 kb repeat family. Chromosoma 105(3):180–189

    Article  PubMed  CAS  Google Scholar 

  • de Greef JC, Lemmers RJL, van Engelen BGM, Sacconi S, Venance SL, Frants RR, Tawil R, van der Maarel SM (2009) Common epigenetic changes of D4Z4 in contraction-dependent and contraction-independent FSHD. Hum Mutat 30(10):1449–1459

    Article  PubMed  Google Scholar 

  • Derr LK, Strathern JN (1993) A role for reverse transcripts in gene conversion. Nature 361(6408):170–173. doi:10.1038/361170a0

    Article  PubMed  CAS  Google Scholar 

  • Ferguson-Smith MA, Trifonov V (2007) Mammalian karyotype evolution. Nat Rev Genet 8(12):950–962. doi:10.1038/nrg2199

    Article  PubMed  CAS  Google Scholar 

  • Fink GR (1987) Pseudogenes in yeast? Cell 49(1):5–6

    Article  PubMed  CAS  Google Scholar 

  • Flint J, Bates GP, Clark K, Dorman A, Willingham D, Roe BA, Micklem G, Higgs DR, Louis EJ (1997) Sequence comparison of human and yeast telomeres identifies structurally distinct subtelomeric domains. Hum Mol Genet 6(8):1305–1313

    Article  PubMed  CAS  Google Scholar 

  • Ganley AR, Kobayashi T (2007) Highly efficient concerted evolution in the ribosomal DNA repeats: total rDNA repeat variation revealed by whole-genome shotgun sequence data. Genome Res 17(2):184–191. doi:10.1101/gr.5457707

    Article  PubMed  CAS  Google Scholar 

  • Grewal PK, van Deutekom JC, Mills KA, Lemmers RJ, Mathews KD, Frants RR, Hewitt JE (1997) The mouse homolog of FRG1, a candidate gene for FSHD, maps proximal to the myodystrophy mutation on chromosome 8. Mamm Genome 8(6):394–398

    Article  PubMed  CAS  Google Scholar 

  • Hach F, Hormozdiari F, Alkan C, Birol I, Eichler EE, Sahinalp SC (2010) mrsFAST: a cache-oblivious algorithm for short-read mapping. Nat Meth 7(8):576–577. doi:10.1038/nmeth0810-576

    Article  CAS  Google Scholar 

  • Hewitt JE, Lyle R, Clark LN, Valleley EM, Wright TJ, Wijmenga C, van Deutekom JCT, Francis F, Sharpe PT, Hofker M, Frants RR, Williamson R (1994) Analysis of the tandem repeat locus D4Z4 associated with facioscapulohumeral muscular-dystrophy. Hum Mol Genet 3(8):1287–1295

    Article  PubMed  CAS  Google Scholar 

  • Hu K (2006) Intron exclusion and the mystery of intron loss. FEBS Lett 580(27):6361–6365. doi:10.1016/j.febslet.2006.10.048

    Article  PubMed  CAS  Google Scholar 

  • Iannuzzi L, Di Berardino D (2008) Tools of the trade: diagnostics and research in domestic animal cytogenetics. J Appl Genet 49(4):357–366. doi:10.1007/BF03195634

    Article  PubMed  Google Scholar 

  • Kawamura-Saito M, Yamazaki Y, Kaneko K, Kawaguchi N, Kanda H, Mukai H, Gotoh T, Motoi T, Fukayama M, Aburatani H, Takizawa T, Nakamura T (2006) Fusion between CIC and DUX4 up-regulates PEA3 family genes in Ewing-like sarcomas with t(4; 19)(q35; q13) translocation. Hum Mol Genet 15(13):2125–2137. doi:10.1093/hmg/ddl136

    Article  PubMed  CAS  Google Scholar 

  • Leidenroth A, Hewitt JE (2010) A family history of DUX4: phylogenetic analysis of DUXA, B, C and Duxbl reveals the ancestral DUX gene. BMC Evol Biol 10:364. doi:10.1186/1471-2148-10-364

    Article  PubMed  CAS  Google Scholar 

  • Lemmers RJL, de Kievit P, van Geel M, van der Wielen MJ, Bakker E, Padberg GW, Frants RR, van der Maarel SM (2001) Complete allele information in the diagnosis of facioscapulohumeral muscular dystrophy by triple DNA analysis. Ann Neurol 50(6):816–819

    Article  PubMed  CAS  Google Scholar 

  • Lemmers RJ, van Overveld PG, Sandkuijl LA, Vrieling H, Padberg GW, Frants RR, van der Maarel SM (2004) Mechanism and timing of mitotic rearrangements in the subtelomeric D4Z4 repeat involved in facioscapulohumeral muscular dystrophy. Am J Hum Genet 75(1):44–53. doi:10.1086/422175

    Article  PubMed  CAS  Google Scholar 

  • Lemmers R, van der Vliet PJ, Klooster R, Sacconi S, Camano P, Dauwerse JG, Snider L, Straasheijm KR, van Ommen GJ, Padberg GW, Miller DG, Tapscott SJ, Tawil R, Frants RR, van der Maarel SM (2010a) A unifying genetic model for facioscapulohumeral muscular dystrophy. Science 329(5999):1650–1653. doi:10.1126/science.1189044

    Article  PubMed  CAS  Google Scholar 

  • Lemmers R, van der Vliet PJ, van der Gaag KJ, Zuniga S, Frants RR, de Knijff P, van der Maarel SM (2010b) Worldwide population analysis of the 4q and 10q subtelomeres identifies only four discrete interchromosomal sequence transfers in human evolution. Am J Hum Genet 86(3):364–377. doi:10.1016/j.ajhg.2010.01.035

    Article  PubMed  CAS  Google Scholar 

  • Lyle R, Wright TJ, Clark LN, Hewitt JE (1995) FSHD-associated repeat, D4Z4, is a member of a dispersed family of homeobox-containing repeats, subsets of which are clustered on the short arms of the acrocentric chromosomes. Genomics 28(3):389–397

    Article  PubMed  CAS  Google Scholar 

  • Mefford HC, Trask BJ (2002) The complex structure and dynamic evolution of human subtelomeres. Nat Rev Genet 3(2):91–102. doi:10.1038/nrg727

    Article  PubMed  CAS  Google Scholar 

  • Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16(3):1215–1215

    Article  PubMed  CAS  Google Scholar 

  • Rens W, Fu B, O'Brien PC, Ferguson-Smith M (2006) Cross-species chromosome painting. Nat Protoc 1(2):783–790. doi:10.1038/nprot.2006.91

    Article  PubMed  CAS  Google Scholar 

  • Rossi M, Ricci E, Colantoni L, Galluzzi G, Frusciante R, Tonali PA, Felicetti L (2007) The facioscapulohumeral muscular dystrophy region on 4qter and the homologous locus on 10qter evolved independently under different evolutionary pressure. BMC Med Genet 8. doi:10.1186/1471-2350-8-8

  • Rudd MK, Endicott RM, Friedman C, Walker M, Young JM, Osoegawa K, de Jong PJ, Green ED, Trask BJ, Progra NCS (2009) Comparative sequence analysis of primate subtelomeres originating from a chromosome fission event. Genome Res 19(1):33–41. doi:10.1101/gr.083170.108

    Article  PubMed  CAS  Google Scholar 

  • Snider L, Geng LN, Lemmers RJLF, Kyba M, Ware CB, Nelson AM, Tawil R, Filippova GN, van der Maarel SM, Tapscott SJ, Miller DG (2010) Facioscapulohumeral dystrophy: incomplete suppression of a retrotransposed gene. PLoS Genet 6(10):e1001181

    Article  PubMed  Google Scholar 

  • Tremblay DC, Alexander G, Moseley S, Chadwick BP (2010) Expression, tandem repeat copy number variation and stability of four macrosatellite arrays in the human genome. BMC Genomics 11:632. doi:Doi10.1186/1471-2164-11-632

    Article  PubMed  Google Scholar 

  • Uzbekova S, Roy-Sabau M, Dalbies-Tran R, Perreau C, Papillier P, Mompart F, Thelie A, Pennetier S, Cognie J, Cadoret V, Royere D, Monget P, Mermillod P (2006) Zygote arrest 1 gene in pig, cattle and human: evidence of different transcript variants in male and female germ cells. Reprod Biol Endocrinol 4:12. doi:10.1186/1477-7827-4-12

    Article  PubMed  Google Scholar 

  • van der Maarel SM, Tawil R, Tapscott SJ (2011) Facioscapulohumeral muscular dystrophy and DUX4: breaking the silence. Trends Mol Med 17(5):252–258. doi:10.1016/j.molmed.2011.01.001

    Article  PubMed  Google Scholar 

  • Vinckenbosch N, Dupanloup I, Kaessmann H (2006) Evolutionary fate of retroposed gene copies in the human genome. Proc Natl Acad Sci U S A 103(9):3220–3225. doi:10.1073/pnas.0511307103

    Article  PubMed  CAS  Google Scholar 

  • Warburton PE, Hasson D, Guillem F, Lescale C, Jin X, Abrusan G (2008) Analysis of the largest tandemly repeated DNA families in the human genome. BMC Genomics 9:533. doi:10.1186/1471-2164-9-533

    Article  PubMed  Google Scholar 

  • Wijmenga C, Hewitt JE, Sandkuijl LA, Clark LN, Wright TJ, Dauwerse HG, Gruter AM, Hofker MH, Moerer P, Williamson R, van Ommen GJB, Padberg GW, Frants RR (1992) Chromosome 4q DNA rearrangements associated with facioscapulohumeral muscular dystrophy. Nat Genet 2(1):26–30

    Article  PubMed  CAS  Google Scholar 

  • Wu SL, Tsai MS, Wong SH, Hsieh-Li HM, Tsai TS, Chang WT, Huang SL, Chiu CC, Wang SH (2010) Characterization of genomic structures and expression profiles of three tandem repeats of a mouse double homeobox gene: Duxbl. Dev Dyn 239(3):927–940

    Article  PubMed  CAS  Google Scholar 

  • Zeng W, de Greef JC, Chen Y-Y, Chien R, Kong X, Gregson HC, Winokur ST, Pyle A, Robertson KD, Schmiesing JA, Kimonis VE, Balog J, Frants RR, Ball AR, Lock LF, Donovan PJ, van der Maarel SM, Yokomori K (2009) Specific loss of histone H3 lysine 9 trimethylation and HP1gamma/cohesin binding at D4Z4 repeats is associated with facioscapulohumeral dystrophy (FSHD). PLoS Genet 5(7):e1000559

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to Phillipa Muston (University of Nottingham, UK) for donating the Fluorescein High-Prime lambda probe and Ramiro Alberio (University of Nottingham, UK) for donating the BFF3 cow cell line. We are grateful to Bill Wickstead (University of Nottingham, UK) and Willem Rens for critical reading of the manuscript and Can Alkan (University of Washington, USA) for help with the mrsFAST and mrCaNaVaR analysis. We gratefully acknowledge funding for a PhD studentship for AL from the Muscular Dystrophy Campaign (UK), grants from the Muscular Dystrophy Association (USA), and FSH Society Inc (USA), and grant 077121 from the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane E. Hewitt.

Additional information

Communicated by David Tremethick

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online resource 1

DUX4 telomeric macrosatellites are present in the Afrotheria (JPEG 77 kb)

High resolution image (TIFF 4447 kb)

Online resource 2

mrCaNaVaR copy-number analysis. a Pulsed-field gel and Southern blot of HapMap subject NA18507 to show DUX4 copy number. The EcoRI excises all four D4Z4 arrays (two on 4q35, two on 10q26). As EcoRI does not cut within the arrays, an internal probe (p13E-11) can be used to show the size of the entire macrosatellite. The four alleles are approximately 160, 74, 35, and 31 kb in length. From these sizes, we subtract 6.9 kb of flanking sequence that is also within each EcoRI fragment, leaving D4Z4 repeat arrays of 153.1, 67.1, 28.1, and 24.1 kb. These can be added up and divided by 3.3 kb to predict a total DUX4 copy number of ~82. b The graph shows the GC normalization applied by mrCaNaVaR for the Fleckvieh dataset. At the extreme ends of GC content, read-depth is systematically underestimated due to poor representation of such inserts in the sequencing library. After correction, the true read-depth is estimated to be higher (JPEG 28 kb)

High resolution image (TIFF 4438 kb)

Online resource 3

mrCaNaVaR results for four different cattle breeds (DOCX 31 kb)

Online resource 4

DUXC trace archive analysis in other Laurasiatheria (DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leidenroth, A., Clapp, J., Mitchell, L.M. et al. Evolution of DUX gene macrosatellites in placental mammals. Chromosoma 121, 489–497 (2012). https://doi.org/10.1007/s00412-012-0380-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-012-0380-y

Keywords

Navigation