Skip to main content
Log in

Atomic force microscope imaging of chromatin assembled in Xenopus laevis egg extract

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Gaps persist in our understanding of chromatin lower- and higher-order structures. Xenopus egg extracts provide a way to study essential chromatin components which are difficult to manipulate in living cells, but nanoscale imaging of chromatin assembled in extracts poses a challenge. We describe a method for preparing chromatin assembled in extracts for atomic force microscopy (AFM) utilizing restriction enzyme digestion followed by transferring to a mica surface. Using this method, we find that buffer dilution of the chromatin assembly extract or incubation of chromatin in solutions of low ionic strength results in loosely compacted chromatin fibers that are prone to unraveling into naked DNA. We also describe a method for direct AFM imaging of chromatin which does not utilize restriction enzymes and reveals higher-order fibers of varying widths. Due to the capability of controlling chromatin assembly conditions, we believe these methods have broad potential for studying physiologically relevant chromatin structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Almouzni G, Wolffe AP (1993) Nuclear assembly, structure, and function: the use of Xenopus in vitro systems. Exp Cell Res 205:1–15

    Article  PubMed  CAS  Google Scholar 

  • Becker PB (2007) Methods in molecular biology—chromatin protocols. Hum Pr 119:509

    Google Scholar 

  • Bennink ML, Leuba SH, Leno GH, Zlatanova J, de Grooth BG, Greve J (2001) Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers. Nat Struct Biol 8:606–610

    Article  PubMed  CAS  Google Scholar 

  • Cui Y, Bustamante C (2000) Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure. Proc Natl Acad Sci USA 97:127–132

    Article  PubMed  CAS  Google Scholar 

  • Davey CA, Sargent DF, Luger K, Maeder AW, Richmond TJ (2002) Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution. J Mol Biol 319:1097–1113

    Article  PubMed  CAS  Google Scholar 

  • Eltsov M, Maclellan KM, Maeshima K, Frangakis AS, Dubochet J (2008) Analysis of cryo-electron microscopy images does not support the existence of 30-nm chromatin fibers in mitotic chromosomes in situ. Proc Natl Acad Sci U S A 105:19732–19737

    Article  PubMed  CAS  Google Scholar 

  • Fakan S (2004) The functional architecture of the nucleus as analysed by ultrastructural cytochemistry. Histochem Cell Biol 122:83–93

    Article  PubMed  CAS  Google Scholar 

  • Fischle W, Tseng BS, Dormann HL, Ueberheide BM, Garcia BA, Shabanowitz J, Hunt DF, Funabiki H, Allis CD (2005) Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438:1116–1122

    Article  PubMed  CAS  Google Scholar 

  • Freedman BS, Miller KE, Heald R (2010) Xenopus egg extracts increase dynamics of histone H1 on sperm chromatin. PLoS ONE 5:e13111

    Article  PubMed  Google Scholar 

  • Hameed FM, Soni GV, Krishnamurthy H, Shivashankar GV (2009) Probing structural stability of chromatin assembly sorted from living cells. Biochem Biophys Res Commun 385:518–522

    Article  PubMed  CAS  Google Scholar 

  • Hirano T, Mitchison TJ (1991) Cell cycle control of higher-order chromatin assembly around naked DNA in vitro. J Cell Biol 115:1479–1489

    Article  PubMed  CAS  Google Scholar 

  • Hirano T, Mitchison TJ (1993) Topoisomerase II does not play a scaffolding role in the organization of mitotic chromosomes assembled in Xenopus egg extracts. J Cell Biol 120:601–612

    Article  PubMed  CAS  Google Scholar 

  • Hirano T, Mitchison TJ (1994) A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro. Cell 79:449–458

    Article  PubMed  CAS  Google Scholar 

  • Horowitz-Scherer RA, Woodcock CL (2006) Organization of interphase chromatin. Chromosoma 115:1–14

    Article  PubMed  Google Scholar 

  • Horowitz RA, Agard DA, Sedat JW, Woodcock CL (1994) The three-dimensional architecture of chromatin in situ: electron tomography reveals fibers composed of a continuously variable zig-zag nucleosomal ribbon. J Cell Biol 125:1–10

    Article  PubMed  CAS  Google Scholar 

  • Huynh VA, Robinson PJ, Rhodes D (2005) A method for the in vitro reconstitution of a defined "30 nm" chromatin fibre containing stoichiometric amounts of the linker histone. J Mol Biol 345:957–968

    Article  PubMed  CAS  Google Scholar 

  • Kireeva N, Lakonishok M, Kireev I, Hirano T, Belmont AS (2004) Visualization of early chromosome condensation: a hierarchical folding, axial glue model of chromosome structure. J Cell Biol 166:775–785

    Article  PubMed  CAS  Google Scholar 

  • Ladoux B, Quivy JP, Doyle P, du Roure O, Almouzni G, Viovy JL (2000) Fast kinetics of chromatin assembly revealed by single-molecule videomicroscopy and scanning force microscopy. Proc Natl Acad Sci U S A 97:14251–14256

    Article  PubMed  CAS  Google Scholar 

  • Laskey RA, Mills AD, Morris NR (1977) Assembly of SV40 chromatin in a cell-free system from Xenopus eggs. Cell 10:237–243

    Article  PubMed  CAS  Google Scholar 

  • Losada A, Hirano M, Hirano T (1998) Identification of Xenopus SMC protein complexes required for sister chromatid cohesion. Genes Dev 12:1986–1997

    Article  PubMed  CAS  Google Scholar 

  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 a resolution. Nature 389:251–260

    Article  PubMed  CAS  Google Scholar 

  • Lusser A, Kadonaga JT (2004) Strategies for the reconstitution of chromatin. Nat Meth 1:19–26

    Article  CAS  Google Scholar 

  • MacCallum DE, Losada A, Kobayashi R, Hirano T (2002) ISWI remodeling complexes in Xenopus egg extracts: identification as major chromosomal components that are regulated by INCENP-aurora B. Mol Biol Cell 13:25–39

    Article  PubMed  CAS  Google Scholar 

  • Maresca TJ, Heald R (2006) Methods for studying spindle assembly and chromosome condensation in Xenopus egg extracts. Meth Mol Biol 322:459–474

    Article  CAS  Google Scholar 

  • Maresca TJ, Freedman BS, Heald R (2005) Histone H1 is essential for mitotic chromosome architecture and segregation in Xenopus laevis egg extracts. J Cell Biol 169:859–869

    Article  PubMed  CAS  Google Scholar 

  • McDowall AW, Smith JM, Dubochet J (1986) Cryo-electron microscopy of vitrified chromosomes in situ. EMBO J 5:1395–1402

    PubMed  CAS  Google Scholar 

  • Murray A (1991) Cell cycle extracts. In Xenopus laevis practical uses in cell and molecular biology. Academic, San Diego, pp 581–605

    Google Scholar 

  • Noll M (1974) Subunit structure of chromatin. Nature 251:249–251

    Article  PubMed  CAS  Google Scholar 

  • Paulson JR, Laemmli UK (1977) The structure of histone-depleted metaphase chromosomes. Cell 12:817–828

    Article  PubMed  CAS  Google Scholar 

  • Robinson PJ, Fairall L, Huynh VA, Rhodes D (2006) EM measurements define the dimensions of the "30-nm" chromatin fiber: evidence for a compact, interdigitated structure. Proc Natl Acad Sci U S A 103:6506–6511

    Article  PubMed  CAS  Google Scholar 

  • Ruberti I, Worcel A (1986) Mechanism of chromatin assembly in Xenopus oocytes. J Mol Biol 189:457–476

    Article  PubMed  CAS  Google Scholar 

  • Sandaltzopoulos R, Becker PB (1999) A solid-phase approach for the analysis of reconstituted chromatin. Meth Mol Biol 119:195–206

    CAS  Google Scholar 

  • Thoma F, Koller T (1977) Influence of histone H1 on chromatin structure. Cell 12:101–107

    Article  PubMed  CAS  Google Scholar 

  • Thoma F, Koller T, Klug A (1979) Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J Cell Biol 83:403–427

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Bash R, Yodh JG, Hager GL, Lohr D, Lindsay SM (2002) Glutaraldehyde modified mica: a new surface for atomic force microscopy of chromatin. Biophys J 83:3619–3625

    Article  PubMed  CAS  Google Scholar 

  • Wignall SM, Deehan R, Maresca TJ, Heald R (2003) The condensin complex is required for proper spindle assembly and chromosome segregation in Xenopus egg extracts. J Cell Biol 161:1041–1051

    Article  PubMed  CAS  Google Scholar 

  • Woodcock CL (1994) Chromatin fibers observed in situ in frozen hydrated sections Native fiber diameter is not correlated with nucleosome repeat length. J Cell Biol 125:11–19

    Article  PubMed  CAS  Google Scholar 

  • Woodcock CL, Ghosh RP (2010) Chromatin higher-order structure and dynamics. Cold Spring Harb Perspect Biol 2: a000596

  • Yan J, Maresca TJ, Skoko D, Adams CD, Xiao B, Christensen MO, Heald R, Marko JF (2007) Micromanipulation studies of chromatin fibers in Xenopus egg extracts reveal ATP-dependent chromatin assembly dynamics. Mol Biol Cell 18:464–474

    Article  PubMed  CAS  Google Scholar 

  • Zheng C, Lu X, Hansen JC, Hayes JJ (2005) Salt-dependent intra- and internucleosomal interactions of the H3 tail domain in a model oligonucleosomal array. J Biol Chem 280:33552–33557

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Assistant Professor CA Davey and Ms. MS Ong (Nanyang Technological University) for preparing the reconstituted 12-mer nucleosome array sample, Dr. FM Hameed and Professor GV Shivashankar (Mechanobiology Institute, Singapore) for helping prepare the chromatin sample from live cell nuclei, and Professor JF Marko (Northwestern University) for stimulating discussions. This work was supported by R144000192112 and R144000251112 from the Ministry of Education of Singapore (to JY) and from the Mechanobiology Institute at the National University of Singapore. Work at UC Berkeley was supported by GM057839 to (RH) from The National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rebecca Heald or Jie Yan.

Additional information

Communicated by E. Nigg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, H., Freedman, B.S., Lim, C.T. et al. Atomic force microscope imaging of chromatin assembled in Xenopus laevis egg extract. Chromosoma 120, 245–254 (2011). https://doi.org/10.1007/s00412-010-0307-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-010-0307-4

Keywords

Navigation