Skip to main content

Advertisement

Log in

Nuclear reformation after mitosis requires downregulation of the Ran GTPase effector RanBP1 in mammalian cells

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The GTPase Ran regulates nucleocytoplasmic transport in interphase and spindle organisation in mitosis via effectors of the importin beta superfamily. Ran-binding protein 1 (RanBP1) regulates guanine nucleotide turnover on Ran, as well as its interactions with effectors. Unlike other Ran network members that are steadily expressed, RanBP1 abundance is modulated during the mammalian cell cycle, peaking in mitosis and declining at mitotic exit. Here, we show that RanBP1 downregulation takes place in mid to late telophase, concomitant with the reformation of nuclei. Mild RanBP1 overexpression in murine cells causes RanBP1 to persist in late mitosis and hinders a set of events underlying the telophase to interphase transition, including chromatin decondensation, nuclear expansion and nuclear lamina reorganisation. Moreover, the reorganisation of nuclear pores fails associated with defective nuclear relocalisation of NLS cargoes. Co-expression of importin beta, together with RanBP1, however mitigates these defects. Thus, RanBP1 downregulation is required for nuclear reorganisation pathways operated by importin beta after mitosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson DJ, Vargas JD, Hsiao JP, Hetzer MW (2009) Recruitment of functionally distinct membrane proteins to chromatin mediates nuclear envelope formation in vivo. J Cell Biol 186:183–191

    Article  PubMed  CAS  Google Scholar 

  • Askjaer P, Galy V, Hannak E, Mattaj IW (2002) Ran GTPase cycle and importins alpha and beta are essential for spindle formation and nuclear envelope assembly in living Caenorhabditis elegans embryos. Mol Biol Cell 13:4355–4370

    Article  PubMed  CAS  Google Scholar 

  • Ball JR, Ullman KS (2005) Versatility at the nuclear pore complex: lessons learned from the nucleoporin Nup153. Chromosoma 114:319–330

    Article  PubMed  Google Scholar 

  • Bamba C, Bobinnec Y, Fukuda M, Nishida E (2002) The GTPase Ran regulates chromosome positioning and nuclear envelope assembly in vivo. Curr Biol 12:503–507

    Article  PubMed  CAS  Google Scholar 

  • Bischoff FR, Görlich D (1997) RanBP1 is crucial for the release of RanGTP from importin beta-related nuclear transport factors. FEBS Lett 419:249–254

    Article  PubMed  CAS  Google Scholar 

  • Bischoff FR, Krebber H, Smirnova E, Dong W, Ponstingl H (1995) Co-activation of Ran GTPase and inhibition of GTP dissociation by Ran-GTP binding protein RanBP1. EMBO J 14:705–715

    PubMed  CAS  Google Scholar 

  • Bodoor K, Shaikh S, Salina D, Raharjo WH, Bastos R, Lohka M, Burke B (1999) Sequential recruitment of NPC proteins to the nuclear periphery at the end of mitosis. J Cell Sci 112:2253–2264

    PubMed  CAS  Google Scholar 

  • Chi NC, Adam EJ, Visser GD, Adam SA (1996) RanBP1 stabilizes the interaction of Ran with p97 nuclear protein import. J Cell Biol 135:559–569

    Article  PubMed  CAS  Google Scholar 

  • Ciciarello M, Mangiacasale R, Thibier C, Guarguaglini G, Marchetti E, Di Fiore B, Lavia P (2004) Importin beta is transported to spindle poles during mitosis and regulates Ran-dependent spindle assembly factors in mammalian cells. J Cell Sci 117:6511–6522

    Article  PubMed  CAS  Google Scholar 

  • Daigle N, Beaudouin J, Hartnell L, Imreh G, Hallberg E, Lippincott-Schwartz J, Ellenberg J (2001) Nuclear pore complexes form immobile networks and have a very low turnover in live mammalian cells. J Cell Biol 154:71–84

    Article  PubMed  CAS  Google Scholar 

  • D’Angelo MA, Anderson DJ, Richard E, Hetzer MW (2006) Nuclear pores form de novo from both sides of the nuclear envelope. Science 312:440–443

    Article  PubMed  CAS  Google Scholar 

  • Davis LI, Blobel G (1987) Nuclear pore complex contains a family of glycoproteins that includes p62 glycosylation through a previously unidentified cellular pathway. PNAS 84:7552–7556

    Article  PubMed  CAS  Google Scholar 

  • Dechat T, Pfleghaar K, Sengupta K, Shimi T, Shumaker DK, Solimando L, Goldman RD (2008) Nuclear lamins major factors in the structural organization and function of the nucleus and chromatin. Genes Dev 22:832–853

    Article  PubMed  CAS  Google Scholar 

  • Delmar VA, Chan RC, Forbes DJ (2008) Xenopus importin beta validates human importin beta as a cell cycle negative regulator. BMC Cell Biol 9:14–25

    Article  PubMed  CAS  Google Scholar 

  • Di Fiore B, Guarguaglini G, Palena A, Kerkhoven RM, Bernards R, Lavia P (1999) Two E2F sites control growth-regulated and cell cycle-regulated transcription of the Htf9-a/RanBP1 gene through functionally distinct mechanisms. J Biol Chem 274:10339–10348

    Article  PubMed  Google Scholar 

  • Di Fiore B, Ciciarello M, Mangiacasale R, Palena A, Tassin AM, Cundari E, Lavia P (2003) Mammalian RanBP1 regulates centrosome cohesion during mitosis. J Cell Sci 116:3399–3411

    Article  PubMed  CAS  Google Scholar 

  • Dultz E, Zanin E, Wurzenberger C, Braun M, Rabut G, Sironi L, Ellenberg J (2008) Systematic kinetic analysis of mitotic dis- and reassembly of the nuclear pore in living cells. J Cell Biol 180:857–865

    Article  PubMed  CAS  Google Scholar 

  • Dultz E, Huet S, Ellenberg J (2009) Formation of the nuclear envelope permeability barrier studied by sequential photoswitching and flux analysis. Biophys J 97:1891–1897

    Article  PubMed  CAS  Google Scholar 

  • Floer M, Blobel G, Rexach M (1997) Disassembly of RanGTP-karyopherin beta complex, an intermediate in nuclear protein import. J Biol Chem 272:19538–19546

    Article  PubMed  CAS  Google Scholar 

  • Frey S, Görlich D (2007) A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore complexes. Cell 130:512–523

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez Y, Meerbrey K, Chong J, Torii Y, Padte NN, Sazer S (2009) Nuclear shape, growth and integrity in the closed mitosis of fission yeast depend on the Ran-GTPase system, the spindle pole body and the endoplasmic reticulum. J Cell Sci 122:2464–2472

    Article  PubMed  CAS  Google Scholar 

  • Gorlich D, Seewald MJ, Ribbeck K (2003) Characterization of Ran-driven cargo transport and the Ran GTPase system by kinetic measurements and computer simulation. EMBO J 22:1088–1100

    Article  PubMed  Google Scholar 

  • Guarguaglini G, Renzi L, D’Ottavio F, Di Fiore B, Casenghi M, Cundari E, Lavia P (2000) Regulated Ran-binding protein 1 activity is required for organization and function of the mitotic spindle in mammalian cells in vivo. Cell Growth Differ 11:455–465

    PubMed  CAS  Google Scholar 

  • Güttinger S, Laurell E, Kutay U (2009) Orchestrating nuclear envelope disassembly and reassembly during mitosis. Nat Rev Mol Cell Biol 10:178–191

    Article  PubMed  CAS  Google Scholar 

  • Haraguchi T, Koujin T, Hayakawa T, Kaneda T, Tsutsumi C, Imamoto N, Akazawa C, Sukegawa J, Yoneda Y, Hiraoka Y (2000) Live fluorescence imaging reveals early recruitment of emerin LBR RanBP2 and Nup153 to reforming functional nuclear envelopes. J Cell Sci 113:779–794

    PubMed  CAS  Google Scholar 

  • Harel A, Forbes DJ (2004) Importin beta conducting a much larger cellular symphony. Mol Cell 16:319–330

    PubMed  CAS  Google Scholar 

  • Harel A, Chan RC, Lachish-Zalait A, Zimmerman E, Elbaum M, Forbes DJ (2003) Importin beta negatively regulates nuclear membrane fusion and nuclear pore complex assembly. Mol Biol Cell 14:4387–4396

    Article  PubMed  CAS  Google Scholar 

  • He X, Hayashi N, Walcott NG, Azuma Y, Patterson TE, Bischoff FR, Nishimoto T, Sazer S (1998) The identification of cDNAs that affect the mitosis-to-interphase transition in Schizosaccharomyces pombe including sbp1 which encodes a spi1p-GTP-binding protein. Genetics 148:645–656

    PubMed  CAS  Google Scholar 

  • Hetzer MW, Wente SR (2009) Border control at the nucleus: biogenesis and organization of the nuclear membrane and pore complexes. Dev Cell 17:606–616

    Article  PubMed  CAS  Google Scholar 

  • Hetzer MW, Bilbao-Cortes D, Walther TC, Gruss OJ, Mattaj IW (2000) GTP hydrolysis by Ran is required for nuclear envelope assembly. Mol Cell 5:1013–1024

    Article  PubMed  CAS  Google Scholar 

  • Hetzer MW, Walther TC, Mattaj IW (2005) Pushing the envelope structure function and dynamics of the nuclear periphery. Annu Rev Cell Dev Biol 21:347–380

    Article  PubMed  CAS  Google Scholar 

  • Hutchins JR, Moore WJ, Hood FE, Wilson JS, Andrews PD, Swedlow JR, Clarke PR (2004) Phosphorylation regulates the dynamic interaction of RCC1 with chromosomes during mitosis. Curr Biol 14:1099–1104

    Article  PubMed  CAS  Google Scholar 

  • Hutchins JR, Moore WJ, Clarke PR (2009) Dynamic localisation of Ran GTPase during the cell cycle. BMC Cell Biol 10:66

    Article  PubMed  CAS  Google Scholar 

  • Koffa MD, Casanova CM, Santarella R, Kocher T, Wilm M, Mattaj IW (2006) HURP is part of a Ran-dependent complex involved in spindle formation. Curr Biol 16:743–754

    Article  PubMed  CAS  Google Scholar 

  • Kutay U, Izaurralde E, Bischoff FR, Mattaj IW, Görlich D (1997) Dominant-negative mutants of importin-beta block multiple pathways of import and export through the nuclear pore complex. EMBO J 16:1153–1163

    Article  PubMed  CAS  Google Scholar 

  • Lau CK, Delmar VA, Chan RC, Phung Q, Bernis C, Fichtman B, Rasala BA, Forbes DJ (2009) Transportin regulates major mitotic assembly events: from spindle to nuclear pore assembly. Mol Biol Cell 20:4043–4058

    Article  PubMed  CAS  Google Scholar 

  • Li HY, Zheng Y (2004) Phosphorylation of RCC1 in mitosis is essential for producing a high RanGTP concentration on chromosomes and for spindle assembly in mammalian cells. Genes Dev 18:512–527

    Article  PubMed  CAS  Google Scholar 

  • Li HY, Ng WP, Wong CH, Iglesias PA, Zheng Y (2007) Coordination of chromosome alignment and mitotic progression by the chromosome-based Ran signal. Cell Cycle 6:1886–1895

    Article  PubMed  CAS  Google Scholar 

  • Lonhienne TG, Forwood JK, Marfori M, Robin G, Kobe B, Carroll BJ (2009) Importin-beta is a GDP-to-GTP exchange factor of Ran: implications for the mechanism of nuclear import. J Biol Chem 284:22549–22558

    Article  PubMed  CAS  Google Scholar 

  • Lounsbury KM, Macara IG (1997) Ran-binding protein 1 (RanBP1) forms a ternary complex with Ran and karyopherin beta and reduces Ran GTPase-activating protein (RanGAP) inhibition by karyopherin beta. J Biol Chem 272:551–555

    Article  PubMed  CAS  Google Scholar 

  • Matynia A, Dimitrov K, Mueller U, He X, Sazer S (1996) Perturbations in the spi1p GTPase cycle of Schizosaccharomyces pombe through its GTPase-activating protein and guanine nucleotide exchange factor components result in similar phenotypic consequences. Mol Cell Biol 16:6352–6362

    PubMed  CAS  Google Scholar 

  • Moir RD, Yoon M, Khuon S, Goldman RD (2000) Nuclear lamins A and B1: different pathways of assembly during nuclear envelope formation in living cells. J Cell Biol 151:1155–1168

    Article  PubMed  CAS  Google Scholar 

  • Nachury MV, Maresca TJ, Salmon WC, Waterman-Storer CM, Heald R, Weis K (2001) Importin beta is a mitotic target of the small GTPase Ran in spindle assembly. Cell 104:95–106

    Article  PubMed  CAS  Google Scholar 

  • Nicolas FJ, Zhang C, Hughes M, Goldberg MW, Watton SJ, Clarke PR (1997) Xenopus Ran-binding protein 1 molecular interactions and effects on nuclear assembly in Xenopus egg extracts. J Cell Sci 110:3019–3030

    PubMed  CAS  Google Scholar 

  • Piel M, Meyer P, Khodjakov A, Rieder CL, Bornens M (2000) The respective contributions of the mother and daughter centrioles to centrosome activity and behavior in vertebrate cells. J Cell Biol 149:317–330

    Article  PubMed  CAS  Google Scholar 

  • Pines J (2006) Mitosis: a matter of getting rid of the right protein at the right time. Trends Cell Biol 16:55–63

    Article  PubMed  CAS  Google Scholar 

  • Plafker K, Macara IG (2000) Facilitated nucleocytoplasmic shuttling of the Ran binding protein RanBP1. Mol Cell Biol 20:3510–3521

    Article  PubMed  CAS  Google Scholar 

  • Plafker K, Macara IG (2002) Fluorescence resonance energy transfer biosensors that detect Ran conformational changes and a Ran∙GDP-importin-b-RanBP1 complex in vitro and in intact cells. J Biol Chem 277:30121–30127

    Article  PubMed  CAS  Google Scholar 

  • Pu RT, Dasso M (1997) The balance of RanBP1 and RCC1 is critical for nuclear assembly and nuclear transport. Mol Biol Cell 8:1955–1970

    PubMed  CAS  Google Scholar 

  • Rabut G, Doye V, Ellenberg J (2004) Mapping the dynamic organization of the nuclear pore complex inside single living cells. Nat Cell Biol 6:1114–1121

    Article  PubMed  CAS  Google Scholar 

  • Rotem A, Gruber R, Shorer H, Shaulov L, Klein E, Harel A (2009) Importin beta regulates the seeding of chromatin with initiation sites for nuclear pore assembly. Mol Biol Cell 20:4031–4042

    Article  PubMed  CAS  Google Scholar 

  • Ryan KJ, McCaffery JM, Wente SR (2003) The Ran GTPase cycle is required for yeast nuclear pore complex assembly. J Cell Biol 160:1041–1053

    Article  PubMed  CAS  Google Scholar 

  • Ryan KJ, Zhou Y, Wente SR (2007) The karyopherin Kap95 regulates nuclear pore complex assembly into intact nuclear envelopes in vivo. Mol Biol Cell 18:886–898

    Article  PubMed  CAS  Google Scholar 

  • Salus SS, Demeter J, Sazer S (2002) The Ran GTPase system in fission yeast affects microtubules and cytokinesis in cells that are competent for nucleocytoplasmic protein transport. Mol Cell Biol 22:8491–8505

    Article  PubMed  CAS  Google Scholar 

  • Sillje HH, Nagel S, Korner R, Nigg EA (2006) HURP is a Ran-importin b-regulated protein that stabilizes kinetochore microtubules in the vicinity of chromosomes. Curr Biol 16:731–742

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto K, Urano T, Zushi H, Inoue K, Tasaka H, Tachibana M, Dotsu M (2002) Molecular dynamics of Aurora-A kinase in living mitotic cells simultaneously visualized with histone H3 and nuclear membrane protein importin alpha. Cell Struct Funct 27:457–467

    Article  PubMed  CAS  Google Scholar 

  • Swaminathan S, Kiendl F, Körner R, Lupetti R, Hengst L, Melchior F (2004) RanGAP1*SUMO1 is phosphorylated at the onset of mitosis and remains associated with RanBP2 upon NPC disassembly. J Cell Biol 164:965–971

    Article  PubMed  CAS  Google Scholar 

  • Tedeschi A, Ciciarello M, Mangiacasale R, Roscioli E, Rensen WM, Lavia P (2007) RANBP1 localizes a subset of mitotic regulatory factors on spindle microtubules and regulates chromosome segregation in human cells. J Cell Sci 120:3748–3761

    Article  PubMed  CAS  Google Scholar 

  • Timinszky G, Tirian L, Nagy FT, Toth G, Perczel A, Kiss-Laszlo Z, Boros I, Clarke PR, Szabad J (2002) The importin-beta P446L dominant-negative mutant protein loses RanGTP binding ability and blocks the formation of intact nuclear envelope. J Cell Sci 115:1675–1687

    PubMed  CAS  Google Scholar 

  • Tirian L, Timinszky G, Szabad J (2003) P446L-importin-beta inhibits nuclear envelope assembly by sequestering nuclear envelope assembly factors to the microtubules. EJCB 82:351–359

    CAS  Google Scholar 

  • Trieselmann N, Wilde A (2002) Ran localizes around the microtubule spindle in vivo during mitosis in Drosophila embryos. Curr Biol 12:1124–1129

    Article  PubMed  CAS  Google Scholar 

  • Walther TC, Askjaer P, Gentzel M, Habermann A, Griffiths G, Wilm M, Mattaj IW, Hetzer MW (2003) RanGTP mediates nuclear pore complex assembly. Nature 424:689–694

    Article  PubMed  CAS  Google Scholar 

  • Weis K (2003) Regulating access to the genome nucleocytoplasmic transport throughout the cell cycle. Cell 112:441–451

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Clarke PR (2000) Chromatin-independent nuclear envelope assembly induced by Ran GTPase in Xenopus egg extracts. Science 288:429–432

    Article  Google Scholar 

  • Zhang C, Clarke PR (2001) Roles of Ran-GTP and Ran-GDP in precursor vesicle recruitment and fusion during nuclear envelope assembly in a human cell-free system. Curr Biol 11:208–812

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Goldberg MW, Moore WJ, Allen TD, Clarke PR (2002a) Concentration of Ran on chromatin induces decondensation, nuclear envelope formation and nuclear pore complex assembly. EJCB 81:623–633

    CAS  Google Scholar 

  • Zhang C, Hutchins JR, Muhlhausser P, Kutay U, Clarke PR (2002b) Role of importin-beta in the control of nuclear envelope assembly by Ran. Curr Biol 12:498–502

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are extremely grateful to Antonio Tedeschi (IMP, Vienna) for contributing to early stages of this work and to Giulia Guarguaglini (IBPM, Rome) for insightful comments on this manuscript. This work was supported by MIUR - Italian Ministry of University and Research (FIRB grant RBIN04T7MT and PRIN grant 200879X9N9-004), Associazione Italiana per la Ricerca sul Cancro (AIRC) and by funds from Assicurazioni Generali and Fondazione Roma Terzo Settore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizia Lavia.

Additional information

Communicated by K. Weis

Electronic supplementary materials

Below is the link to the electronic supplementary material.

In vivo recording of an NIH3T3 cell co-transfected with H2B-GFP and RanBP1-RFP. Images were taken every 2 min for 3 h (IF images every 30 min), and the movie runs at four frames per second (MOV 397 kb)

Supplementary video 2

In vivo recording of stable L929-centrin1-GFP cells transfected with RanBP1-RFP. Images were taken every10 min for 50 h (IF images every 12 h), and the movie runs at seven frames per second. Non-transfected cells divide three times during video recording. The RanBP1-transfected cell (red fluorescence emission) divides 12 h after the onset of recording, but the newly formed daughter cells never divide again thereafter and retain nuclei of small size for the rest of the recording time. (MOV 1711 kb)

In vivo recording of stable L929-centrin1-GFP cells transfected with RanBP1-RFP. Images were taken every 10 min for 36 h (IF images after 6 h, thereafter every 12 h), and the movie runs at seven frames per second. Note that the RanBP1-transfected cell (red) divides once and does not divide again for the remainder of the recording time. (MOV 885 kb)

Supplementary fig. 1

Mitotic progression in U20S cell cultures synchronised by thymidine arrest and release, collected at mitotic round-up by shake off and replated to complete mitosis. Samples were harvested every 30 min after shake-off, fixed and processed for immunofluorescence (DAPI and alpha-tubulin) to identify mitotic stages at each time point (at least 200 counted cells per time point). (GIF 28 kb)

High Resolution (TIFF 128 kb)

Supplementary fig. 2

RanBP1 plasmid transfection yields RanBP1 persistence at mitotic exit. The panels show representative late mitotic NIH3T3 cells transfected with vector or with untagged RanBP1 construct; a trace of pDsRed1-N1 vector was included in the transfection mixture to identify transfected cells (not depicted); RanBP1 was revealed using FITC-conjugated secondary antibody to anti-RanBP1. Note RanBP1 persistence in late telophase in cells transfected with RanBP1 construct. (GIF 65 kb)

High resolution (TIFF 670 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciciarello, M., Roscioli, E., Di Fiore, B. et al. Nuclear reformation after mitosis requires downregulation of the Ran GTPase effector RanBP1 in mammalian cells. Chromosoma 119, 651–668 (2010). https://doi.org/10.1007/s00412-010-0286-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-010-0286-5

Keywords

Navigation