Skip to main content

Advertisement

Log in

The Mi-2/NuRD complex associates with pericentromeric heterochromatin during S phase in rapidly proliferating lymphoid cells

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Chromosomal replication results in the duplication not only of DNA sequence but also of the patterns of histone modification, DNA methylation, and nucleoprotein structure that constitute epigenetic information. Pericentromeric heterochromatin in human cells is characterized by unique patterns of histone and DNA modification. Here, we describe association of the Mi-2/NuRD complex with specific segments of pericentromeric heterochromatin consisting of Satellite II/III DNA located on human chromosomes 1, 9, and 16 in some but not all cell types. This association is linked in part to DNA replication and chromatin assembly and may suggest a role in these processes. Mi-2/NuRD accumulation is independent of Polycomb association and is characterized by a unique pattern of histone modification. We propose that Mi-2/NuRD constitutes an enzymatic component of a pathway for assembly and maturation of chromatin utilized by rapidly proliferating lymphoid cells for replication of constitutive heterochromatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Berger R, Busson-Le Coniat M (1999) Centric and pericentric chromosome rearrangements in hematopoietic malignancies. Leukemia 13:671–678

    Article  PubMed  CAS  Google Scholar 

  • Blanco-Betancourt CE, Moncla A, Milili M, Jiang YL, Viegas-Pequignot EM, Roquelaure B, Thuret I, Schiff C (2004) Defective B-cell-negative selection and terminal differentiation in the ICF syndrome. Blood 103:2683–2690

    Article  PubMed  CAS  Google Scholar 

  • Bowen NJ, Fujita N, Kajita M, Wade PA (2004) Mi-2/NuRD: multiple complexes for many purposes. Biochim Biophys Acta 1677:52–57

    PubMed  CAS  Google Scholar 

  • Brown KE, Guest SS, Smale ST, Hahm K, Merkenschlager M, Fisher AG (1997) Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell 91:845–854

    Article  PubMed  CAS  Google Scholar 

  • Brown KE, Baxter J, Graf D, Merkenschlager M, Fisher AG (1999) Dynamic repositioning of genes in the nucleus of lymphocytes preparing for cell division. Mol Cell 3:207–217

    Article  PubMed  CAS  Google Scholar 

  • Busson-Le Coniat M, Salomon-Nguyen F, Dastugue N, Maarek O, Lafage-Pochitaloff M, Mozziconacci MJ, Baranger L, Brizard F, Radford I, Jeanpierre M, Bernard OA, Berger R (1999) Fluorescence in situ hybridization analysis of chromosome 1 abnormalities in hematopoietic disorders: rearrangements of DNA Satellite II and new recurrent translocations. Leukemia 13:1975–1981

    Article  PubMed  CAS  Google Scholar 

  • Cajal SRy (1903) Un sencillo metodo de coloracion seletiva del reticulo protoplasmatico y sus efectos en los diversos organos nerviosos de vertebrados e invertebrados. Trab Lab Invest Biol 2:129–221

    Google Scholar 

  • Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science (New York) NY 298:1039–1043

    CAS  Google Scholar 

  • Dimitrova DS, Berezney R (2002) The spatio-temporal organization of DNA replication sites is identical in primary, immortalized and transformed mammalian cells. J Cell Sci 115:4037–4051

    Article  PubMed  CAS  Google Scholar 

  • Feng Q, Zhang Y (2001) The MeCP1 complex represses transcription through preferential binding, remodeling, and deacetylating methylated nucleosomes. Genes Dev 15:827–832

    PubMed  CAS  Google Scholar 

  • Fox MH, Arndt-Jovin DJ, Jovin TM, Baumann PH, Robert-Nicoud M (1991) Spatial and temporal distribution of DNA replication sites localized by immunofluorescence and confocal microscopy in mouse fibroblasts. J Cell Sci 99(Pt 2):247–253

    PubMed  Google Scholar 

  • Fu XD, Maniatis T (1990) Factor required for mammalian spliceosome assembly is localized to discrete regions in the nucleus. Nature 343:437–441

    Article  PubMed  CAS  Google Scholar 

  • Fujita N, Takebayashi S, Okumura K, Kudo S, Chiba T, Saya H, Nakao M (1999) Methylation-mediated transcriptional silencing in euchromatin by methyl-CpG binding protein MBD1 isoforms. Mol Cell Biol 19:6415–6426

    PubMed  CAS  Google Scholar 

  • Fujita N, Jaye DL, Kajita M, Geigerman C, Moreno CS, Wade PA (2003) MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell 113:207–219

    Article  PubMed  CAS  Google Scholar 

  • Fujita N, Jaye DL, Geigerman C, Akyildiz A, Mooney MR, Boss JM, Wade PA (2004) MTA3 and the Mi-2/NuRD complex regulate cell fate during B lymphocyte differentiation. Cell 119:75–86

    Article  PubMed  CAS  Google Scholar 

  • Gazdar AF, Oie HK, Kirsch IR, Hollis GF (1986) Establishment and characterization of a human plasma cell myeloma culture having a rearranged cellular myc proto-oncogene. Blood 67:1542–1549

    PubMed  CAS  Google Scholar 

  • Guschin D, Wade PA, Kikyo N, Wolffe AP (2000) ATP-dependent histone octamer mobilization and histone deacetylation mediated by the Mi-2 chromatin remodeling complex. Biochemistry 39:5238–5245

    Article  PubMed  CAS  Google Scholar 

  • Hanna MG Jr (1964) An autoradiographic study of the germinal center in spleen white pulp during early intervals of the immune response. Lab Invest 13:95–104

    PubMed  Google Scholar 

  • Hansen RS, Wijmenga C, Luo P, Stanek AM, Canfield TK, Weemaes CM, Gartler SM (1999) The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc Natl Acad Sci USA 96:14412–14417

    Article  PubMed  CAS  Google Scholar 

  • Hendrich B, Bird A (1998) Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol 18:6538–6547

    PubMed  CAS  Google Scholar 

  • Houston SI, McManus KJ, Adams MM, Sims JK, Carpenter PB, Hendzel MJ, Rice JC (2008) Catalytic function of the PR-Set7 histone H4 lysine 20 monomethyltransferase is essential for mitotic entry and genomic stability. J Biol Chem 283:19478–19488

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Sif S, Jones B, Jackson A, Koipally J, Heller E, Winandy S, Viel A, Sawyer A, Ikeda T, Kingston R, Georgopoulos K (1999) Ikaros DNA-binding proteins direct formation of chromatin remodeling complexes in lymphocytes. Immunity 10:345–355

    Article  PubMed  CAS  Google Scholar 

  • Klein G, Giovanella B, Westman A, Stehlin JS, Mumford D (1975) An EBV-genome-negative cell line established from an American Burkitt lymphoma; receptor characteristics. EBV infectibility and permanent conversion into EBV-positive sublines by in vitro infection. Intervirology 5:319–334

    PubMed  CAS  Google Scholar 

  • Lachner M, O'Carroll D, Rea S, Mechtler K, Jenuwein T (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410:116–120

    Article  PubMed  CAS  Google Scholar 

  • Liu YJ, Zhang J, Lane PJ, Chan EY, MacLennan IC (1991) Sites of specific B cell activation in primary and secondary responses to T cell-dependent and T cell-independent antigens. Eur J Immunol 21:2951–2962

    Article  PubMed  CAS  Google Scholar 

  • Lubit BW, Pham TD, Miller OJ, Erlanger BF (1976) Localization of 5-methylcytosine in human metaphase chromosomes by immunoelectron microscopy. Cell 9:503–509

    Article  PubMed  CAS  Google Scholar 

  • Maraschio P, Tupler R, Dainotti E, Piantanida M, Cazzola G, Tiepolo L (1989) Differential expression of the ICF (immunodeficiency, centromeric heterochromatin, facial anomalies) mutation in lymphocytes and fibroblasts. J Med Genet 26:452–456

    Article  PubMed  CAS  Google Scholar 

  • Minc E, Courvalin JC, Buendia B (2000) HP1gamma associates with euchromatin and heterochromatin in mammalian nuclei and chromosomes. Cytogenet Cell Genet 90:279–284

    Article  PubMed  CAS  Google Scholar 

  • Monneron A, Bernhard W (1969) Fine structural organization of the interphase nucleus in some mammalian cells. J Ultrastruct Res 27:266–288

    Article  PubMed  CAS  Google Scholar 

  • Ng HH, Jeppesen P, Bird A (2000) Active repression of methylated genes by the chromosomal protein MBD1. Mol Cell Biol 20:1394–1406

    Article  PubMed  CAS  Google Scholar 

  • Nicol L, Jeppesen P (1994) Human autoimmune sera recognize a conserved 26 kD protein associated with mammalian heterochromatin that is homologous to heterochromatin protein 1 of Drosophila. Chromosome Res 2:245–253

    Article  PubMed  CAS  Google Scholar 

  • O'Keefe RT, Henderson SC, Spector DL (1992) Dynamic organization of DNA replication in mammalian cell nuclei: spatially and temporally defined replication of chromosome-specific alpha-satellite DNA sequences. J Cell Biol 116:1095–1110

    Article  PubMed  Google Scholar 

  • Polo SE, Almouzni G (2006) Chromatin assembly: a basic recipe with various flavours. Curr Opin Genet Dev 16:104–111

    Article  PubMed  CAS  Google Scholar 

  • Quivy JP, Roche D, Kirschner D, Tagami H, Nakatani Y, Almouzni G (2004) A CAF-1 dependent pool of HP1 during heterochromatin duplication. Embo J 23:3516–3526

    Article  PubMed  CAS  Google Scholar 

  • Saurin AJ, Shiels C, Williamson J, Satijn DP, Otte AP, Sheer D, Freemont PS (1998) The human Polycomb group complex associates with pericentromeric heterochromatin to form a novel nuclear domain. J Cell Biol 142:887–898

    Article  PubMed  CAS  Google Scholar 

  • Sawyer JR, Swanson CM, Koller MA, North PE, Ross SW (1995) Centromeric instability of chromosome 1 resulting in multibranched chromosomes, telomeric fusions, and “jumping translocations” of 1q in a human immunodeficiency virus-related non-Hodgkin's lymphoma. Cancer 76:1238–1244

    Article  PubMed  CAS  Google Scholar 

  • Sawyer JR, Tricot G, Mattox S, Jagannath S, Barlogie B (1998) Jumping translocations of chromosome 1q in multiple myeloma: evidence for a mechanism involving decondensation of pericentromeric heterochromatin. Blood 91:1732–1741

    PubMed  CAS  Google Scholar 

  • Sewalt RG, Lachner M, Vargas M, Hamer KM, den Blaauwen JL, Hendrix T, Melcher M, Schweizer D, Jenuwein T, Otte AP (2002) Selective interactions between vertebrate polycomb homologs and the SUV39H1 histone lysine methyltransferase suggest that histone H3–K9 methylation contributes to chromosomal targeting of Polycomb group proteins. Mol Cell Biol 22:5539–5553

    Article  PubMed  CAS  Google Scholar 

  • Sims JK, Houston SI, Magazinnik T, Rice JC (2006) A trans-tail histone code defined by monomethylated H4 Lys-20 and H3 Lys-9 demarcates distinct regions of silent chromatin. J Biol Chem 281:12760–12766

    Article  PubMed  CAS  Google Scholar 

  • Sobel RE, Cook RG, Perry CA, Annunziato AT, Allis CD (1995) Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc Natl Acad Sci USA 92:1237–1241

    Article  PubMed  CAS  Google Scholar 

  • Spector DL, Goldman RD, Leinwand LA (1998) Cells: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Taddei A, Roche D, Sibarita JB, Turner BM, Almouzni G (1999) Duplication and maintenance of heterochromatin domains. J Cell Biol 147:1153–1166

    Article  PubMed  CAS  Google Scholar 

  • Voncken JW, Schweizer D, Aagaard L, Sattler L, Jantsch MF, van Lohuizen M (1999) Chromatin-association of the Polycomb group protein BMI1 is cell cycle-regulated and correlates with its phosphorylation status. J Cell Sci 112(Pt 24):4627–4639

    PubMed  CAS  Google Scholar 

  • Wade PA, Jones PL, Vermaak D, Wolffe AP (1998) A multiple subunit Mi-2 histone deacetylase from Xenopus laevis cofractionates with an associated Snf2 superfamily ATPase. Curr Biol 8:843–846

    Article  PubMed  CAS  Google Scholar 

  • Wade PA, Gegonne A, Jones PL, Ballestar E, Aubry F, Wolffe AP (1999) Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nat Genet 23:62–66

    PubMed  CAS  Google Scholar 

  • Weis K, Rambaud S, Lavau C, Jansen J, Carvalho T, Carmo-Fonseca M, Lamond A, Dejean A (1994) Retinoic acid regulates aberrant nuclear localization of PML-RAR alpha in acute promyelocytic leukemia cells. Cell 76:345–356

    Article  PubMed  CAS  Google Scholar 

  • Wreggett KA, Hill F, James PS, Hutchings A, Butcher GW, Singh PB (1994) A mammalian homologue of Drosophila heterochromatin protein 1 (HP1) is a component of constitutive heterochromatin. Cytogenet Cell Genet 66:99–103

    Article  PubMed  CAS  Google Scholar 

  • Xu GL, Bestor TH, Bourc'his D, Hsieh CL, Tommerup N, Bugge M, Hulten M, Qu X, Russo JJ, Viegas-Pequignot E (1999) Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402:187–191

    Article  PubMed  CAS  Google Scholar 

  • Xue Y, Wong J, Moreno GT, Young MK, Cote J, Wang W (1998) NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol Cell 2:851–861

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, MacLennan IC, Liu YJ, Lane PJ (1988) Is rapid proliferation in B centroblasts linked to somatic mutation in memory B cell clones? Immunol Lett 18:297–299

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, LeRoy G, Seelig HP, Lane WS, Reinberg D (1998) The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell 95:279–289

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y, Jung MK, Oakley BR (1991) Gamma-tubulin is present in Drosophila melanogaster and Homo sapiens and is associated with the centrosome. Cell 65:817–823

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Huntington Willard (Duke University), Dr. Weidong Wang (National Institute of Aging), Dr. Judd Rice (University of Southern California), Dr. Stephen Smale (UCLA), and Dr. Maureen Powers (Emory University) for the generous gift of antibodies used in this study. We are grateful to Dr. Beth Sullivan for excellent suggestions and to Jeff Reece and the NIEHS Confocal Microscopy Center for assistance with confocal imaging. This manuscript was substantially improved by critical comments from Dr. Karen Adelman, Dr. Melanie Erlich, and Dr. Harriet Kinyamu. We gratefully acknowledge technical assistance from Dr. Anne Lai and Dr. Jennifer Sims in the isolation and analysis of primary B lymphocytes. We thank the various members of the Wade, Adelman, and Archer laboratories for useful discussions during the course of this work. This work was supported in part by the Intramural Research Program of the National Institute of Environmental Health Sciences (Project number Z01ES101965), NIH (PW), and by grants from the National Institutes of Health (GM073120 to BPC, DK60647 to DLJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Wade.

Additional information

Communicated by G. Almouzni.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Localization of additional Mi-2/NuRD subunits relative to MTA3 in GC B-cell-like lines. Ramos cells were immunostained with antibodies against MTA3 (green) and either MTA1 or MTA2 (red). (79.1 kb)

High resolution image file (EPS 664 KB)

Supplementary Table 1

(DOC 42 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helbling Chadwick, L., Chadwick, B.P., Jaye, D.L. et al. The Mi-2/NuRD complex associates with pericentromeric heterochromatin during S phase in rapidly proliferating lymphoid cells. Chromosoma 118, 445–457 (2009). https://doi.org/10.1007/s00412-009-0207-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-009-0207-7

Keywords

Navigation