Skip to main content
Log in

Integrated cytogenetic map of mitotic metaphase chromosome 9 of maize: resolution, sensitivity, and banding paint development

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

To study the correlation of the sequence positions on the physical DNA finger print contig (FPC) map and cytogenetic maps of pachytene and somatic maize chromosomes, sequences located along the chromosome 9 FPC map approximately every 10 Mb were selected to place on maize chromosomes using fluorescent in situ hybridization (FISH). The probes were produced as pooled polymerase chain reaction products based on sequences of genetic markers or repeat-free portions of mapped bacterial artificial chromosome (BAC) clones. Fifteen probes were visualized on chromosome 9. The cytological positions of most sequences correspond on the pachytene, somatic, and FPC maps except some probes at the pericentromeric regions. Because of unequal condensation of mitotic metaphase chromosomes, being lower at pericentromeric regions and higher in the arms, probe positions are displaced to the distal ends of both arms. The axial resolution of FISH on somatic chromosome 9 varied from 3.3 to 8.2 Mb, which is 12–30 times lower than on pachytene chromosomes. The probe collection can be used as chromosomal landmarks or as a “banding paint” for the physical mapping of sequences including transgenes and BAC clones and for studying chromosomal rearrangements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Amarillo FIE, Bass HW (2007) A transgenomic cytogenetic sorghum (Sorghum propinquum) bacterial artificial chromosome fluorescence in situ hybridization map of maize (Zea mays L.) pachytene chromosome 9, evidence for regions of genome hyperexpansion. Genetics 177:1509–1526

    Article  PubMed  CAS  Google Scholar 

  • Ananiev EV, Phillips RL, Rines HW (1998) A knob-associated tandem repeat in maize capable of forming fold-back DNA segments: are chromosome knobs megatransposons? Proc Natl Acad Sci U S A 95:13073–13078

    Article  PubMed  CAS  Google Scholar 

  • Anderson LK, Doyle GG, Brigham B, Carter J, Hooker KD, Lai A, Rice M, Stack SM (2003) High-resolution crossover maps for each bivalent of Zea mays using recombination nodules. Genetics 165:849–865

    PubMed  CAS  Google Scholar 

  • Anderson LK, Salameh N, Bass HW, Harper LC, Cande WZ, Weber G, Stack SM (2004) Integrating genetic linkage maps with pachytene chromosome structure in maize. Genetics 166:1923–1933

    Article  PubMed  CAS  Google Scholar 

  • Anderson LK, Lai A, Stack SM, Rizzon C, Gaut BS (2006) Uneven distribution of expressed sequence tag loci on maize pachytene chromosomes. Genome Res 16:115–122

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen JL, Ma J (2003) The genetic colinearity of rice and other cereals on the basis of genomic sequence analysis. Curr Opin Plant Biol 6:128–133

    Article  PubMed  CAS  Google Scholar 

  • Brunner SK, Morgante FM, Tingey S, Rafalski A (2005) Evolution of DNA sequence nonhomologies among maize inbreds. Plant Cell 17:343–360

    Article  PubMed  CAS  Google Scholar 

  • Coe E, Cone K, McMullen M, Chen SS, Davis G, Gardiner J, Liscum E, Polacco M, Paterson A, Sanchez-Villeda H, Soderlund C, Wing R (2002) Access to the maize genome: an integrated physical and genetic map. Plant Physiol 128:9–12

    Article  PubMed  CAS  Google Scholar 

  • Davis GL, McMullen MD, Baysdorfer C, Musket T, Grant D, Staebell M, Xu G, Polacco M, Koster L, Melia-Hancock S, Houchins K, Chao S, Coe EH Jr (1999) A maize map standard with sequenced core markers, grass genome reference points and 932 expressed sequence tagged sites (ESTs) in a 1736-locus map. Genetics 152:1137–1172

    PubMed  CAS  Google Scholar 

  • De Jong JH, Fransz P, Zabel P (1999) High resolution FISH in plants—techniques and applications. Trends Plant Sci 4:258–263

    Article  Google Scholar 

  • Dempsey E (1993) Traditional analysis of maize pachytene chromosomes. In: Freeling M, Walbot V (eds) The maize handbook. Springer, Berlin

    Google Scholar 

  • Desel C, Jung C, Cai D, Kleine M, Schmidt T (2001) High-resolution mapping of YACs and the single-copy gene Hs1pro-1 on Beta vulgaris chromosomes by multi-colour fluorescence in situ hybridization. Plant Mol Biol 45:113–122

    Article  PubMed  CAS  Google Scholar 

  • Fransz PF, Armstrong S, De Jong JH, Parnell LD, Van Drunen C, Dean C, Zabel P, Bisseling T, Jones GH (2000) Integrated cytogenetic map of chromosome arm 4S of A. thaliana: structural organization of heterochromatic knob and centromere region. Cell 100:367–376

    Article  PubMed  CAS  Google Scholar 

  • Fu H, Dooner HK (2002) Intraspecific violation of genetic colinearity and its implications in maize. Proc Natl Acad Sci U S A 99:9573–9578

    PubMed  CAS  Google Scholar 

  • Fuchs J, Pich U, Meister A, Schubert I (1994) Differentiation of field bean heterochromatin by in situ hybridization with a repeated FokI sequence. Chomosom Res 2:24–28

    Google Scholar 

  • Fukushi D, Shichiri M, Sugiyama S, Yoshino T, Hagiwara S, Ohtani T (2003) Scanning near-field optical/atomic force microscopy detection of fluorescence in situ hybridization signals beyond the optical limit. Exp Cell Res 289:237–244

    Article  PubMed  CAS  Google Scholar 

  • Gale MD, Devos KM (1998) Comparative genetics in the grasses. Proc Natl Acad Sci U S A 95:1971–1974

    Article  PubMed  CAS  Google Scholar 

  • Gaut BS (2001) Patterns of chromosomal duplication in maize and their implications for comparative maps of the grasses. Genome Res 11:55–66

    Article  PubMed  CAS  Google Scholar 

  • Haberer G, Young S, Bharti AK, Gundlach H, Raymond C, Fuks G, Butler E, Wing RA, Rounsley S, Birren B, Nusbaum C, Mayer KF, Messing J (2005) Structure and architecture of the maize genome. Plant Physiol 139:1612–1624

    Article  PubMed  CAS  Google Scholar 

  • Harper LC, Cande WZ (2000) Mapping a new frontier: development of integrated cytogenetic maps in plants. Funct Integr Genomics 1:89–98

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Gill BS (2006) Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49:1057–1068

    Article  PubMed  CAS  Google Scholar 

  • Kato A, Lamb JC, Birchler JA (2004) Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci U S A 101:13554–13559

    Article  PubMed  CAS  Google Scholar 

  • Kato A, Albert PS, Vega JM, Birchler JA (2006) Sensitive FISH signal detection in maize using directly labeled probes produced by high concentration DNA polymerase nick translation. Biotech Histochem 81:71–78

    Article  PubMed  CAS  Google Scholar 

  • Khrustaleva LI, Kik C (2001) Localization of single-copy T-DNA insertion in transgenic shallots (Allium cepa) by using ultra-sensitive FISH with tyramide signal amplification. Plant J 25:699–707

    Article  PubMed  CAS  Google Scholar 

  • Koumbaris GL, Bass HW (2003) A new single-locus cytogenetic mapping system for maize (Zea mays L.): overcoming FISH detection limits with marker-selected sorghum (S. propinquum L.) BAC clones. Plant J 35:647–659

    Article  PubMed  CAS  Google Scholar 

  • Kozubek M (2001) Theoretical versus experimental resolution in optical microscopy. Microsc Res Tech 53:157–166

    Article  PubMed  CAS  Google Scholar 

  • Lamb JC, Danilova TV, Bauer MJ, Meyer JM, Holland JJ Jensen MD, Birchler JA (2007) Single-gene detection and karyotyping using small-target fluorescence in situ hybridization on maize somatic chromosomes. Genetics 175:1047–1058

    Article  PubMed  CAS  Google Scholar 

  • Lawrence CJ, Seigfried TE, Bass HW, Anderson LK (2006) Predicting chromosomal locations of genetically mapped loci in maize using the Morgan2McClintock translator. Genetics 172:2007–2009

    Article  PubMed  CAS  Google Scholar 

  • Lee M, Sharopova N, Beavis WD, Grant D, Katt M, Blair D, Hallauer A (2002) Expanding the genetic map of maize with the intermated B73 × Mo17 (IBM) population. Plant Mol Biol 48:453–461

    Article  PubMed  CAS  Google Scholar 

  • Li L, Arumuganathan K (2001) Physical mapping of 45S and 5S rDNA on maize metaphase and sorted chromosomes by FISH. Hereditas 134:141–145

    Article  PubMed  CAS  Google Scholar 

  • Messing J, Dooner HK (2006) Organization and variability of the maize genome. Curr Opin Plant Biol 9:157–163

    Article  PubMed  CAS  Google Scholar 

  • Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A, Rafalski A (2005) Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet 37:997–1002

    Article  PubMed  CAS  Google Scholar 

  • Page BT, Wanous MK, Birchler JA (2001) Characterization of a maize chromosome 4 centromeric sequence: evidence for an evolutionary relationship with the B chromosome centromere. Genetics 159:291–302

    PubMed  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Chapman BA (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci U S A 101:9903–9908

    Article  PubMed  CAS  Google Scholar 

  • Peacock WJ, Dennis ES, Rhoades MM, Pryor AJ (1981) Highly repeated DNA sequence limited to knob heterochromatin in maize. Proc Natl Acad Sci U S A 78:4490–4494

    Article  PubMed  CAS  Google Scholar 

  • Pedersen C, Rasmussen S, Linde-Laursen I (1996) Genome and chromosome identification in cultivated barley and related species of the Triticeae (Poaceae) by in situ hybridization with the GAA-satellite sequence. Genome 39:93–104

    Article  PubMed  CAS  Google Scholar 

  • Reeves A, Tear J (2000) MicroMeasure for Windows, version 3.3. (http://www.colostate.edu/Depts/Biology/MicroMeasure)

  • Sadder MT, Weber G (2001) Karyotype of maize (Zea mays L.) mitotic metaphase chromosomes as revealed by fluorescent in situ hybridization (FISH) with cytogenetic DNA markers. Plant Mol Biol Report 19:117–123

    Article  CAS  Google Scholar 

  • Sadder MT, Weber G (2002) Comparison between genetic and physical maps in Zea mays L. of molecular markers linked to resistance against Diatraea spp. Theor Appl Genet 104:908–915

    Article  PubMed  CAS  Google Scholar 

  • Schubert I, Fransz PF, Fuchs J, de Jong JH (2001) Chromosome painting in plants. Methods Cell Sci 23:57–69

    Article  PubMed  CAS  Google Scholar 

  • Sharopova N, McMullen MD, Schultz L, Schroeder S, Sanchez-Villeda H, Gardiner J, Bergstrom D, Houchins K, Melia-Hancock S, Musket T, Duru N, Polacco M, Edwards K, Ruff T, Register JC, Brouwer C, Thompson R, Velasco R, Chin E, Lee M, Woodman-Clikeman W, Long MJ, Liscum E, Cone K, Davis G, Coe EH Jr (2002) Development and mapping of SSR markers for maize. Plant Mol Biol 48:463–481

    Article  PubMed  CAS  Google Scholar 

  • Shichiri M, Fukushi D, Sugiyama S, Yoshino T, Ohtani T (2003) Analysis by atomic force microscopy of morphological changes in barley chromosomes during FISH treatment. Chomosom Res 11:65–71

    Article  CAS  Google Scholar 

  • Smit AF, Hubley R, Green P (1996–2004) RepeatMasker Open-3.0. http://www.repeatmasker.org

  • Stephens JL, Brown SE, Lapitan NLV, Knudson DL (2004) Physical mapping of barley genes using an ultrasensitive fluorescence in situ hybridization technique. Genome 47:179–189

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama S, Yoshino T, Kanahara H, Shichiri M, Fukushi D, Ohtani T (2004) Effects of acetic acid treatment on plant chromosome structures analyzed by atomic force microscopy. Anal Biochem 324:39–44

    Article  PubMed  CAS  Google Scholar 

  • Sumner AT (1990) Chromosome banding. Unwin Hyman, London

    Google Scholar 

  • Swigonova Z, Bennetzen JL, Messing J (2005) Structure and evolution of the r/b chromosomal regions in rice, maize and sorghum. Genetics 169:891–906

    Article  PubMed  CAS  Google Scholar 

  • Tabata S, Kaneko T, Nakamura Y, Kotani H, Kato T, Asamizu E, Miyajima N, Sasamoto S, Kimura T, Hosouchi T, Kawashima K, Kohara M, Matsumoto M, Matsuno A, Muraki A, Nakayama S, Nakazaki N, Naruo K, Okumura S, Shinpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, Sato S, de la Bastide M, Huang E, Spiegel L, Gnoj L, O'Shaughnessy A, Preston R, Habermann K, Murray J, Johnson D, Rohlfing T, Nelson J, Stoneking T, Pepin K, Spieth J, Sekhon M, Armstrong J, Becker M, Belter E, Cordum H, Cordes M, Courtney L, Courtney W, Dante M, Du H, Edwards J, Fryman J, Haakensen B, Lamar E, Latreille P, Leonard S, Meyer R, Mulvaney E, Ozersky P, Riley A, Strowmatt C, Wagner-McPherson C, Wollam A, Yoakum M, Bell M, Dedhia N, Parnell L, Shah R, Rodriguez M, See LH, Vil D, Baker J, Kirchoff K, Toth K, King L, Bahret A, Miller B, Marra M, Martienssen R, McCombie WR, Wilson RK, Murphy G, Bancroft I, Volckaert G, Wambutt R, Düsterhöft A, Stiekema W, Pohl T, Entian KD, Terryn N, Hartley N, Bent E, Johnson S, Langham SA, McCullagh B, Robben J, Grymonprez B, Zimmermann W, Ramsperger U, Wedler H, Balke K, Wedler E, Peters S, van Staveren M, Dirkse W, Mooijman P, Lankhorst RK, Weitzenegger T, Bothe G, Rose M, Hauf J, Berneiser S, Hempel S, Feldpausch M, Lamberth S, Villarroel R, Gielen J, Ardiles W, Bents O, Lemcke K, Kolesov G, Mayer K, Rudd S, Schoof H, Schueller C, Zaccaria P, Mewes HW, Bevan M, Fransz P, Kazusa DNA Research InstituteCold Spring Harbor and Washington University in St Louis Sequencing ConsortiumEuropean Union Arabidopsis Genome Sequencing Consortium (2000) Sequence and analysis of chromosome 5 of the plant Arabidopsis thaliana. Nature 408:823–826

    Article  PubMed  CAS  Google Scholar 

  • Valdivia ER, Sampedro J, Lamb JC, Chopra S, Cosgrove DJ (2007) Phylogenetic analysis and localization of maize genes encoding pollen group-1 allergens. Plant Physiol 1433:1269–1281

    Article  CAS  Google Scholar 

  • Villalobos DP, Bautista R, Cánovas FM, Claros MG (2004) Isolation of bacterial artificial chromosome DNA by means of improved alkaline lysis and double potassium acetate precipitation. Plant Mol Biol Report 22:419–425

    Article  CAS  Google Scholar 

  • Wang CJ, Chen CC (2005) Cytogenetic mapping in maize. Cytogenet Genome Res 109:63–69

    Article  PubMed  Google Scholar 

  • Wang CJ, Harper L, Cande WZ (2006) High-resolution single-copy gene fluorescence in situ hybridization and its use in the construction of a cytogenetic map of maize chromosome 9. Plant Cell 18:529–544

    Article  PubMed  CAS  Google Scholar 

  • Wanner G, Formanek H (2000) A new chromosome model. J Struct Biol 132:147–161

    Article  PubMed  CAS  Google Scholar 

  • Wei F, Coe E, Nelson W, Bharti AK, Engler F, Butler E, Kim H, Goicoechea JL, Chen M, Lee S, Fuks G, Sanchez-Villeda H, Schroeder S, Fang Z, McMullen M, Davis G, Bowers JE, Paterson AH, Schaeffer M, Gardiner J, Cone K, Messing J, Soderlund C, Wing RA (2007) Physical and genetic structure of the maize genome reflects its complex evolutionary history. PLoS Genetics 3:1254–1263

    Article  CAS  Google Scholar 

  • Yu W, Lamb JC, Han F, Birchler JA (2007) Cytological visualization of DNA transposons and their transposition pattern in somatic cells of maize. Genetics 175:31–39

    Article  PubMed  Google Scholar 

  • Zoller JF, Herrmann RG, Wanner G (2004) Chromosome condensation in mitosis and meiosis of rye (Secale cereale L.). Cytogenet Genome Res 105:134–144

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Leah Westgate for supplying KYS inflorescences and Patrice Albert and Peggy J. Northup for assistance. This work was supported by a grant from the National Science Foundation Plant Genome Initiative, DBI 0423898.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Birchler.

Additional information

Responsible editor: P. Shaw

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure 1

(DOC 1.56 MB).

Supplemental Table 1

(DOC 78.5 kb).

Supplemental Table 2

(DOC 29 kb).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danilova, T.V., Birchler, J.A. Integrated cytogenetic map of mitotic metaphase chromosome 9 of maize: resolution, sensitivity, and banding paint development. Chromosoma 117, 345–356 (2008). https://doi.org/10.1007/s00412-008-0151-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-008-0151-y

Keywords

Navigation