Skip to main content
Log in

The role of SUMO in chromosome segregation

  • Mini-Review
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Chromosome segregation is an essential feature of the eukaryotic cell cycle. Efficient chromosome segregation requires the co-ordination of several cellular processes; some of which involve gross rearrangements of the overall structure of the genetic material. Recent advances in the analysis of the role of SUMO (small ubiquitin-like modifier) and in the identification of SUMO-modified targets indicate that sumoylation is likely to have several key roles in regulating chromosome segregation This mini-review summarises the recently published data concerning the role of SUMO in the processes required for efficient chromosome segregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • al-Khodairy F, Enoch T, Hagan IM, Carr AM (1995) The Schizosaccharomyces pombe hus5 gene encodes a ubiquitin conjugating enzyme required for normal mitosis. J Cell Sci 108:475–486

    PubMed  CAS  Google Scholar 

  • Andrews EA, Palecek J, Sergeant J, Taylor E, Lehmann AR, Watts FZ (2005) Nse2, a component of the Smc5-6 complex, is a SUMO ligase required for the response to DNA damage. Mol Cell Biol 25:185–196

    Article  PubMed  CAS  Google Scholar 

  • Azuma Y, Arnaoutov A, Dasso M (2003) SUMO-2/3 regulates topoisomerase II in mitosis. J Cell Biol 163:477–487

    Article  PubMed  CAS  Google Scholar 

  • Azuma Y, Arnaoutov A, Anan T, Dasso M (2005) PIASy mediates SUMO-2 conjugation of Topoisomerase-II on mitotic chromosomes. EMBO J 24:2172–2182

    Article  PubMed  CAS  Google Scholar 

  • Bachant J, Alcasabas A, Blat Y, Kleckner N, Elledge SJ (2002) The SUMO-1 isopeptidase Smt4 is linked to centromeric cohesion through SUMO-1 modification of DNA topoisomerase II. Mol Cell 9:1169–1182

    Article  PubMed  CAS  Google Scholar 

  • Biggins S, Bhalla N, Chang A, Smith DL, Murray AW (2001) Genes involved in sister chromatid separation and segregation in the budding yeast Saccharomyces cerevisiae. Genetics 159:453–470

    PubMed  CAS  Google Scholar 

  • D’Amours D, Stegmeier F, Amon A (2004) Cdc14 and condensin control the dissolution of cohesin-independent chromosome linkages at repeated DNA. Cell 117:455–469

    Article  PubMed  CAS  Google Scholar 

  • Dasso M (2001) Running on Ran: nuclear transport and the mitotic spindle. Cell 104:321–324

    Article  PubMed  CAS  Google Scholar 

  • Dieckhoff P, Bolte M, Sancak Y, Braus GH, Irniger S (2004) Smt3/SUMO and Ubc9 are required for efficient APC/C-mediated proteolysis in budding yeast. Mol Microbiol 51:1375–1387

    Article  PubMed  CAS  Google Scholar 

  • Dohmen RJ, Stappen R, McGrath JP, Forrova H, Kolarov J, Goffeau A, Varshavsky A (1995) An essential yeast gene encoding a homolog of ubiquitin-activating enzyme. J Biol Chem 270:18099–18109

    Article  PubMed  CAS  Google Scholar 

  • Freeman L, Aragon-Alcaide L, Strunnikov A (2000) The condensin complex governs chromosome condensation and mitotic transmission of rDNA. J Cell Biol 149:811–824

    Article  PubMed  CAS  Google Scholar 

  • Fukagawa T, Regnier V, Ikemura T (2001) Creation and characterization of temperature-sensitive CENP-C mutants in vertebrate cells. Nucleic Acids Res 29:3796–3803

    Article  PubMed  CAS  Google Scholar 

  • Gill G (2005) Something about SUMO inhibits transcription. Curr Opin Genet Dev 15:536–541

    Article  PubMed  CAS  Google Scholar 

  • Hartman T, Stead K, Koshland D, Guacci V (2000) Pds5p is an essential chromosomal protein required for both sister chromatid cohesion and condensation in Saccharomyces cerevisiae. J Cell Biol 151:613–626

    Article  PubMed  CAS  Google Scholar 

  • Ho JC, Watts FZ (2003) Characterization of SUMO-conjugating enzyme mutants in Schizosaccharomyces pombe identifies a dominant-negative allele that severely reduces SUMO conjugation. Biochem J 372:97–104

    Article  PubMed  CAS  Google Scholar 

  • Johnson ES, Schwienhorst I, Dohmen RJ, Blobel G (1997) The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J 16:5509–5519

    Article  PubMed  CAS  Google Scholar 

  • Joseph J, Tan SH, Karpova TS, McNally JG, Dasso M (2002) SUMO-1 targets RanGAP1 to kinetochores and mitotic spindles. J Cell Biol 156:595–602

    Article  PubMed  CAS  Google Scholar 

  • Joseph J, Liu ST, Jablonski SA, Yen TJ, Dasso M (2004) The RanGAP1-RanBP2 complex is essential for microtubule-kinetochore interactions in vivo. Curr Biol 14:611–617

    Article  PubMed  CAS  Google Scholar 

  • Li SJ, Hochstrasser M (1999) A new protease required for cell-cycle progression in yeast. Nature 398:246–251

    Article  PubMed  CAS  Google Scholar 

  • Li SJ, Hochstrasser M (2000) The yeast ULP2 (SMT4) gene encodes a novel protease specific for the ubiquitin-like Smt3 protein. Mol Cell Biol 20:2367–2377

    Article  PubMed  CAS  Google Scholar 

  • Mahajan R, Gerace L, Melchior F (1998) Molecular characterization of the SUMO-1 modification of RanGAP1 and its role in nuclear envelope association. J Cell Biol 140:259–270

    Article  PubMed  CAS  Google Scholar 

  • Mao Y, Desai SD, Liu LF (2000) SUMO-1 conjugation to human DNA topoisomerase II isozymes. J Biol Chem 275:26066–26073

    Article  PubMed  CAS  Google Scholar 

  • Meluh PB, Koshland D (1995) Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C. Mol Biol Cell 6:793–807

    PubMed  CAS  Google Scholar 

  • Nacerddine K, Lehembre F, Bhaumik M, Artus J, Cohen-Tannoudji M, Babinet C, Pandolfi PP, Dejean A (2005) The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev Cell 9:769–779

    Article  PubMed  CAS  Google Scholar 

  • Nasmyth K, Haering CH (2005) The structure and function of SMC and kleisin complexes. Annu Rev Biochem 74:595–648

    Article  PubMed  CAS  Google Scholar 

  • Papouli E, Chen S, Davies AA, Huttner D, Krejci L, Sung P, Ulrich HD (2005) Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol Cell 19:123–133

    Article  PubMed  CAS  Google Scholar 

  • Pfander B, Moldovan GL, Sacher M, Hoege C, Jentsch S (2005) SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436:428–433

    PubMed  CAS  Google Scholar 

  • Potts PR, Yu H (2005) Human MMS21/NSE2 is a SUMO ligase required for DNA repair. Mol Cell Biol 25:7021–7032

    Article  PubMed  CAS  Google Scholar 

  • Saitoh H, Tomkiel J, Cooke CA, Ratrie H, Maurer M 3rd, Rothfield NF, Earnshaw WC (1992) CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate. Cell 70:115–125

    Article  PubMed  CAS  Google Scholar 

  • Saitoh H, Pu R, Cavenagh M, Dasso M (1997) RanBP2 associates with Ubc9p and a modified form of RanGAP1. Proc Natl Acad Sci USA 94:3736–3741

    Article  PubMed  CAS  Google Scholar 

  • Schwienhorst I, Johnson ES, Dohmen RJ (2000) SUMO conjugation and deconjugation. Mol Gen Genet 263:771–786

    Article  PubMed  CAS  Google Scholar 

  • Seufert W, Futcher V, Jentsch S (1995) Role of a ubiquitin-conjugating enzyme in degradation of S- and M-phase cyclins. Nature 373:78–81

    Article  PubMed  CAS  Google Scholar 

  • Shayeghi M, Doe CL, Tavassoli M, Watts FZ (1997) Characterisation of Schizosaccharomyces pombe rad31, a UBA-related gene required for DNA damage tolerance. Nucleic Acids Res 25:1162–1169

    Article  PubMed  CAS  Google Scholar 

  • Shin JA, Choi ES, Kim HS, Ho JC, Watts FZ, Park SD, Jang YK (2005) SUMO modification is involved in the maintenance of heterochromatin stability in fission yeast. Mol Cell 19:817–828

    Article  PubMed  CAS  Google Scholar 

  • Stead K, Aguilar C, Hartman T, Drexel M, Meluh P, Guacci V (2003) Pds5p regulates the maintenance of sister chromatid cohesion and is sumoylated to promote the dissolution of cohesion. J Cell Biol 163:729–741

    Article  PubMed  CAS  Google Scholar 

  • Strunnikov, Aravind AVL, Koonin EV (2001) Saccharomyces cerevisiae SMT4 encodes an evolutionarily conserved protease with a role in chromosome condensation regulation. Genetics 158:95–107

    PubMed  CAS  Google Scholar 

  • Tanaka K, Nishide J, Okazaki K, Kato H, Niwa O, Nakagawa T, Matsuda H, Kawamukai M, Murakami Y (1999) Characterization of a fission yeast SUMO-1 homologue, pmt3p, required for multiple nuclear events, including the control of telomere length and chromosome segregation. Mol Cell Biol 19:8660–8672

    PubMed  CAS  Google Scholar 

  • Taylor DL, Ho JC, Oliver A, Watts FZ (2002) Cell-cycle-dependent localisation of Ulp1, a Schizosaccharomyces pombe Pmt3 (SUMO)-specific protease. J Cell Sci 115:1113–1122

    PubMed  CAS  Google Scholar 

  • Wang SW, Read RL, Norbury CJ (2002) Fission yeast Pds5 is required for accurate chromosome segregation and for survival after DNA damage or metaphase arrest. J Cell Sci 115:587–598

    PubMed  CAS  Google Scholar 

  • Watts FZ (2006) Sumoylation of PCNA: wrestling with recombination at stalled replication forks. DNA Repair (Amst) 5:399–403

    Article  CAS  Google Scholar 

  • Zhao X, Blobel G (2005) A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc Natl Acad Sci USA 102:4777–4782

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

FZW thanks the Leverhulme Trust for a research fellowship (RFG/10839).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felicity Z. Watts.

Additional information

Communicated by E.A. Nigg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watts, F.Z. The role of SUMO in chromosome segregation. Chromosoma 116, 15–20 (2007). https://doi.org/10.1007/s00412-006-0079-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-006-0079-z

Keywords

Navigation