Skip to main content
Log in

Abundance and chromosomal distribution of six Drosophila buzzatii transposons: BuT1, BuT2, BuT3, BuT4, BuT5, and BuT6

  • Research article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The abundance and chromosomal distribution of six class-II transposable elements (TEs) of Drosophila buzzatii have been analyzed by Southern blotting and in situ hybridization. These six transposons had been previously found at the breakpoints of inversions 2j and 2q 7 of D. buzzatii. These two polymorphic inversions were generated by an ectopic recombination event between two copies of Galileo, a Foldback element. The four breakpoints became hotspots for TE insertions after the generation of the inversion and the transposons analyzed in this work are considered to be secondary invaders of these regions. Insertions of the six transposons are present in the euchromatin but show an increased density in the pericentromeric euchromatin–heterochromatin transition region and the dot chromosome. They are also more abundant in the inverted segments of chromosome 2 rearrangements. We further observed that the accumulation of TE insertions varies between elements and is correlated between dot, proximal regions, and inverted segments. These observations fully agree with previous data in Drosophila melanogaster and support recombination rate as the chief force explaining the chromosomal distribution of TEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andolfatto P, Depaulis F, Navarro A (2001) Inversion polymorphisms and nucleotide variability in Drosophila. Genet Res 77:1–8

    Article  PubMed  CAS  Google Scholar 

  • Ashburner M (1989) Drosophila. A laboratory handbook. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Bachtrog D (2003) Accumulation of Spock and Worf, two novel non-LTR retrotransposons, on the neo-Y chromosome of Drosophila miranda. Mol Biol Evol 20:173–181

    Article  PubMed  CAS  Google Scholar 

  • Bartolomé C, Maside X (2004) The lack of recombination drives the fixation of transposable elements on the fourth chromosome of Drosophila melanogaster. Genet Res 83:91–100

    Article  PubMed  CAS  Google Scholar 

  • Bartolomé C, Maside X, Charlesworth B (2002) On the abundance and distribution of transposable elements in the genome of Drosophila melanogaster. Mol Biol Evol 19:926–937

    PubMed  Google Scholar 

  • Biemont C, Cizeron G (1999) Distribution of transposable elements in Drosophila species. Genetica 105:43–62

    Article  PubMed  CAS  Google Scholar 

  • Cáceres M, Barbadilla A, Ruiz A (1999a) Recombination rate predicts inversion size in Diptera. Genetics 153:251–259

    PubMed  Google Scholar 

  • Cáceres M, Ranz JM, Barbadilla A, Long M, Ruiz A (1999b) Generation of a widespread Drosophila inversion by a transposable element. Science 285:415–418

    Article  PubMed  Google Scholar 

  • Cáceres M, Puig M, Ruiz A (2001) Molecular characterization of two natural hotspots in the Drosophila buzzatii genome induced by transposon insertions. Genome Res 11:1353–1364

    Article  PubMed  Google Scholar 

  • Carmena M, González C (1995) Transposable elements map in a conserved pattern of distribution extending from beta-heterochromatin to centromeres in Drosophila melanogaster. Chromosoma 103:676–684

    Article  PubMed  CAS  Google Scholar 

  • Casals F, Cáceres M, Ruiz A (2003) The foldback-like transposon Galileo is involved in the generation of two different natural chromosomal inversions of Drosophila buzzatii. Mol Biol Evol 20:674–685

    Article  PubMed  CAS  Google Scholar 

  • Casals F, Cáceres M, Manfrin MH, González J, Ruiz A (2005) Molecular characterization and chromosomal distribution of Galileo, Kepler and Newton, three foldback transposable elements of the Drosophila buzzatii species complex. Genetics 169:2047–2059

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B (1996) Background selection and patterns of genetic diversity in Drosophila melanogaster. Genet Res 68:131–149

    PubMed  CAS  Google Scholar 

  • Charlesworth B, Langley CH (1989) The population genetics of Drosophila transposable elements. Annu Rev Genet 23:251–287

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B, Lapid A, Canada D (1992) The distribution of transposable elements within and between chromosomes in a population of Drosophila melanogaster. II. Inferences on the nature of selection against elements. Genet Res 60:115–130

    PubMed  CAS  Google Scholar 

  • Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–220

    Article  PubMed  CAS  Google Scholar 

  • Craig NL (1997) Target site selection in transposition. Annu Rev Biochem 66:437–474

    Article  PubMed  CAS  Google Scholar 

  • Daveran-Mingot ML, Campo N, Ritzenthaler P, Le Bourgeois P (1998) A natural large chromosomal inversion in Lactococcus lactis is mediated by homologous recombination between two insertion sequences. J Bacteriol 180:4834–4842

    PubMed  CAS  Google Scholar 

  • Dimitri P (1997) Constitutive heterochromatin and transposable elements in Drosophila melanogaster. Genetica 100:85–93

    Article  PubMed  CAS  Google Scholar 

  • Dimitri P, Junakovic N, Arca B (2003) Colonization of heterochromatic genes by transposable elements in Drosophila. Mol Biol Evol 20:503–512

    Article  PubMed  CAS  Google Scholar 

  • Eanes WF, Wesley C, Charlesworth B (1992) Accumulation of P elements in minority inversions in natural populations of Drosophila melanogaster. Genet Res 59:1–9

    PubMed  CAS  Google Scholar 

  • Evgen’ev MB, Zelentsova H, Poluectova H, Lyozin GT, Veleikodvorskaja V, Pyatkov KI, Zhivotovsky LA, Kidwell MG (2000) Mobile elements and chromosomal evolution in the virilis group of Drosophila. Proc Natl Acad Sci U S A 97:11337–11342

    Article  PubMed  CAS  Google Scholar 

  • Francino O, Cabré O, Fontdevila A (1993) Distribution of the copia transposable element in the repleta group of Drosophila. Genet Sel Evol 25:501–516

    Article  CAS  Google Scholar 

  • Goldman AS, Lichten M (1996) The efficiency of meiotic recombination between dispersed sequences in Saccharomyces cerevisiae depends upon their chromosomal location. Genetics 144:43–55

    PubMed  CAS  Google Scholar 

  • Gordo I, Charlesworth B (2001) Genetic linkage and molecular evolution. Curr Biol 11:R684–686

    Article  PubMed  CAS  Google Scholar 

  • Hill WG, Robertson A (1966) The effect of linkage on limits to artificial selection. Genet Res 8:269–294

    Article  PubMed  CAS  Google Scholar 

  • Hoskins RA, Smith CD, Carlson JW, Carvalho AB, Halpern A, Kaminker JS, Kennedy C, Mungall CJ, Sullivan BA, Sutton GG, Yasuhara JC, Wakimoto BT, Myers EW, Celniker SE, Rubin GM, Karpen GH (2002) Heterochromatic sequences in a Drosophila whole-genome shotgun assembly. Genome Biol 3:research 0085.1–85.16

    Google Scholar 

  • Junakovic N, Terrinoni A, Di Franco C, Vieira C, Loevenbruck C (1998) Accumulation of transposable elements in the heterochromatin and on the Y chromosome of Drosophila simulans and Drosophila melanogaster. J Mol Evol 46:661–668

    Article  PubMed  CAS  Google Scholar 

  • Kaminker JS, Bergman CM, Kronmiller B, Carlson J, Svirskas R, Patel S, Frise E, Wheeler DA, Lewis SE, Rubin GM, Ashburner M, Celniker SE (2002) The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective. Genome Biol 3:research0084.1–84.2

    Google Scholar 

  • Kim JM, Vanguri S, Boeke JD, Gabriel A, Voytas DF (1998) Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res 8:464–478

    PubMed  CAS  Google Scholar 

  • Labrador M, Fontdevila A (1994) High transposition rates of Osvaldo, a new Drosophila buzzatii retrotransposon. Mol Gen Genet 245:661–674

    Article  PubMed  CAS  Google Scholar 

  • Langley CH, Montgomery E, Hudson R, Kaplan N, Charlesworth B (1988) On the role of unequal exchange in the containment of transposable element copy number. Genet Res 52:223–235

    PubMed  CAS  Google Scholar 

  • Lathe WC 3rd, Burke WD, Eickbush DG, Eickbush TH (1995) Evolutionary stability of the R1 retrotransposable element in the genus Drosophila. Mol Biol Evol 12:1094–1105

    Google Scholar 

  • Locke J, Podemski L, Roy K, Pilgrim D, Hodgetts RR (1999) Analysis of two cosmid clones from chromosome 4 of Drosophila melanogaster reveals two new genes amid an unusual arrangement of repeated sequences. Genome Res. 9:137–149

    PubMed  CAS  Google Scholar 

  • Maside X, Bartolome C, Assimacopoulos S, Charlesworth B (2001) Rates of movement and distribution of transposable elements in Drosophila melanogaster: in situ hybridization vs Southern blotting data. Genet Res 78:121–136

    Article  PubMed  CAS  Google Scholar 

  • Montgomery E, Charlesworth B, Langley CH (1987) A test for the role of natural selection in the stabilization of transposable element copy number in a population of Drosophila melanogaster. Genet Res 49:31–41

    PubMed  CAS  Google Scholar 

  • Montgomery EA, Huang SM, Langley CH, Judd BH (1991) Chromosome rearrangement by ectopic recombination in Drosophila melanogaster: genome structure and evolution. Genetics 129:1085–1098

    PubMed  CAS  Google Scholar 

  • Navarro A, Betran E, Barbadilla A, Ruiz A (1997) Recombination and gene flux caused by gene conversion and crossing over in inversion heterokaryotypes. Genetics 146:695–709

    PubMed  CAS  Google Scholar 

  • Naveira H, Fontdevila A (1985) The evolutionary history of Drosophila buzzatii. IX. High frequencies of new chromosome rearrangements induced by introgressive hybridization. Chromosoma 91:87–94

    Article  PubMed  CAS  Google Scholar 

  • Petrov DA, Aminetzach YT, Davis JC, Bensasson D, Hirsh AE (2003) Size matters: non-LTR retrotransposable elements and ectopic recombination in Drosophila. Mol Biol Evol 20:880–892

    Article  PubMed  CAS  Google Scholar 

  • Pimpinelli S, Berloco M, Fanti L, Dimitri P, Bonaccorsi S, Marchetti E, Caizzi R, Caggese C, Gatti M (1995) Transposable elements are stable structural components of Drosophila melanogaster heterochromatin. Proc Natl Acad Sci U S A 92:3804–3808

    Article  PubMed  CAS  Google Scholar 

  • Quesneville H, Bergman CM, Andrieu O, Autard D, Nouaud D, Ashburner M, Anxolabehere D (2005) Combined evidence annotation of transposable elements in genome sequences. PLoS Comput Biol 1:166–175

    Article  PubMed  CAS  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Rizzon C, Marais G, Gouy M, Biemont C (2002) Recombination rate and the distribution of transposable elements in the Drosophila melanogaster genome. Genome Res 12:400–407

    Article  PubMed  CAS  Google Scholar 

  • Ruiz A, Wasserman M (1993) Evolutionary cytogenetics of the Drosophila buzzatii species complex. Heredity 70(Pt 6):582–596

    Article  PubMed  Google Scholar 

  • Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z, Bennetzen JL (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274:765–768

    Article  CAS  Google Scholar 

  • SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL (1998) The paleontology of intergene retrotransposons of maize. Nat Genet 20:43–45

    Article  PubMed  CAS  Google Scholar 

  • Schwartz A, Chan DC, Brown LG, Alagappan R, Pettay D, Disteche C, McGillivray B, de la Chapelle A, Page DC (1998) Reconstructing hominid Y evolution: X-homologous block, created by X-Y transposition, was disrupted by Yp inversion through LINE–LINE recombination. Hum Mol Genet 7:1–11

    Article  PubMed  CAS  Google Scholar 

  • Steinemann M, Steinemann S (1991) Preferential Y chromosomal location of TRIM, a novel transposable element of Drosophila miranda, obscura group. Chromosoma 101:169–179

    Article  PubMed  CAS  Google Scholar 

  • Steinemann M, Steinemann S (1997) The enigma of Y chromosome degeneration: TRAM, a novel retrotransposon is preferentially located on the Neo-Y chromosome of Drosophila miranda. Genetics 145:261–266

    PubMed  CAS  Google Scholar 

  • Wharton L (1942) Analysis of the repleta group of Drosophila. Tex Univ Publ 4228:23–52

    Google Scholar 

  • Wilder J, Hollocher H (2001) Mobile elements and the genesis of microsatellites in dipterans. Mol Biol Evol 18:384–392

    PubMed  CAS  Google Scholar 

  • Zelentsova H, Poluectova H, Mnjoian L, Lyozin G, Veleikodvorskaja V, Zhivotovsky L, Kidwell MG, Evgen’ev MB (1999) Distribution and evolution of mobile elements in the virilis species group of Drosophila. Chromosoma 108:443–456

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by grant BMC2002-01708 from the Dirección General de Enseñanza Superior e Investigación Científica (Ministerio de Educación y Cultura, Spain), which was awarded to A.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Ruiz.

Additional information

Communicated by C. Lehner

Sequence data from this article have been deposited in the EMBL/GenBank Data Libraries under accession number DQ402469.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

412_2006_71_MOESM1_ESM.pdf

412_2006_71_MOESM2_ESM.pdf

412_2006_71_MOESM3_ESM.pdf

412_2006_71_MOESM4_ESM.pdf

Fig. S1

Southern blot hybridization of (a) BuT1, (b) BuT2, (c) BuT3, (d) BuT4, (e) BuT5 and (f) BuT6 probes to genomic DNA of the following D. buzzatii lines (from left to right): st-1, st-3, st-7, st-10, j-2, j-9, j-19, j-23, j-24, jq7-1, jq7-4, jz3-6, jz3-7, y3-1 and s-1 (JPEG 39 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casals, F., González, J. & Ruiz, A. Abundance and chromosomal distribution of six Drosophila buzzatii transposons: BuT1, BuT2, BuT3, BuT4, BuT5, and BuT6 . Chromosoma 115, 403–412 (2006). https://doi.org/10.1007/s00412-006-0071-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-006-0071-7

Keywords

Navigation