Skip to main content

Advertisement

Log in

Telomere biology: integrating chromosomal end protection with DNA damage response

  • Review
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Telomeres play the key protective role at chromosomes. Many studies indicate that loss of telomere function causes activation of DNA damage response. Here, we review evidence supporting interdependence between telomere maintenance and DNA damage response and present a model in which these two pathways are combined into a single mechanism for protecting chromosomal integrity. Proteins directly involved in telomere maintenance and DNA damage response include Ku, DNA-PKcs, RAD51D, PARP-2, WRN and RAD50/MRE11/NBS1 complex. Since most of these proteins participate in the repair of DNA double-strand breaks (DSBs), this was perceived by many authors as a paradox, given that telomeres function to conceal natural DNA ends from mechanisms that detect and repair DSBs. However, we argue here that the key function of one particular DSB protein, Ku, is to prevent or control access of telomerase, the enzyme that synthesises telomeric sequences, to both internal DSBs and natural chromosomal ends. This view is supported by observations that Ku has a high affinity for DNA ends; it acts as a negative regulator of telomerase and that telomerase itself can target internal DSBs. Ku then directs other DSB repair/telomere maintenance proteins to either repair DSBs at internal chromosomal sites or prevent uncontrolled elongation of telomeres by telomerase. This model eliminates the above paradox and provides a testable scenario in which the role of DSB repair proteins is to protect chromosomal integrity by balancing repair activities and telomere maintenance. In our model, a close association between telomeres and different DNA damage response factors is not an unexpected event, but rather a logical result of chromosomal integrity maintenance activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adelfalk C, Lorenz M, Serra V, von Zglinicki T, Hirsch-Kauffmann M, Schweiger M (2001) Accelerated telomere shortening in Fanconi anemia fibroblasts—a longitudinal study. FEBS Lett 506:22–26

    Article  PubMed  CAS  Google Scholar 

  • Al-Wahiby S, Slijepcevic P (2005) Chromosomal abnormalities in BRCA1 deficient human and mouse cell lines. Cytogenet Genome Res (in press)

  • Bailey SM, Meyne J, Chen DJ, Kurimasa A, Li GC, Lehnert BE, Goodwin EH (1999) DNA double-strand break repair proteins are required to cap the ends of mammalian chromosomes. Proc Natl Acad Sci U S A 96:14899–14904

    Article  PubMed  CAS  Google Scholar 

  • Bailey SM, Cornforth MN, Kurimasa A, Chen DJ, Goodwin EH (2001) Strand-specific postreplicative processing of mammalian telomeres. Science 293:2462–2465

    Article  PubMed  CAS  Google Scholar 

  • Bailey SM, Brenneman MA, Goodwin EH (2004) Frequent recombination in telomeric DNA may extend the proliferative life of telomerase-negative cells. Nucleic Acids Res 32:3743–3751

    Article  PubMed  CAS  Google Scholar 

  • Bi X, Wei SC, Rong YS (2004) Telomere protection without a telomerase; the role of ATM and Mre11 in Drosophila telomere maintenance. Curr Biol 14:1348–1353

    Article  PubMed  CAS  Google Scholar 

  • Blackburn E, Gall J (1978) A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J Mol Biol 120:33–53

    Article  PubMed  CAS  Google Scholar 

  • Blunt T, Gell D, Fox M, Taccioli GE, Lehmann AR, Jackson SP, Jeggo PA (1996) Identification of a nonsense mutation in the carboxyl-terminal region of DNA-dependent protein kinase catalytic subunit in the SCID mouse. Proc Natl Acad Sci U S A 93:10285–10290

    Article  PubMed  CAS  Google Scholar 

  • Boulton SJ, Jackson SP (1996) Identification of a Saccharomyces cerevisiae Ku80 homologue: roles in DNA double strand break rejoining and in telomeric maintenance. Nucleic Acids Res 24:4639–4648

    Article  PubMed  CAS  Google Scholar 

  • Boulton SJ, Jackson SP (1998) Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J 17:1819–1828

    Article  PubMed  CAS  Google Scholar 

  • Bradshaw PS, Stavropoulos DJ, Meyn S (2005) Human telomeric protein TRF2 associates with genomic double strand breaks as an early response to DNA damage. Nat Genet 37:193–197

    Article  PubMed  CAS  Google Scholar 

  • Brookman KW, Lamerdin JE, Thelen MP, Hwang M, Reardon JT, Sancar A, Zhou ZQ, Walter CA, Parris CN, Thompson LH (1996) ERCC4 (XPF) encodes a human nucleotide excision repair protein with eukaryotic recombination homologs. Mol Cell Biol 16:6553–6562

    PubMed  CAS  Google Scholar 

  • Cabuy E, Newton C, Joksic G, Woodbine L, Kooler B, Jeggo PA, Slijepcevic P (2005) Accelerated telomere shortening and telomere abnormalities in radiosensitive cell lines. Radiat Res (in press)

  • Callen E, Samper E, Ramirez MJ, Creus A, Marcos R, Ortega JJ, Olive T, Badell I, Blasco MA, Surralles J (2002) Breaks at telomeres and TRF2-independent end fusions in Fanconi anemia. Hum Mol Genet 11:439–444

    Article  PubMed  CAS  Google Scholar 

  • Cawthon RM, Smith KR, O’Brien E, Sivatchenko A, Kerber RA (2003) Association between telomere length in blood and mortality in people aged 60 years or older. Lancet 361:393–395

    Article  PubMed  CAS  Google Scholar 

  • Chan SW, Blackburn EH (2002) New ways not to make ends meet: telomerase, DNA damage proteins and heterochromatin. Oncogene 21:553–563

    Article  PubMed  CAS  Google Scholar 

  • Ciapponi L, Cenci G, Ducau J, Flores C, Johnson-Schlitz D, Gorski MM, Engels WR, Gatti M (2004) The Drosophila Mre11/Rad50 complex is required to prevent both telomeric fusion and chromosome breakage. Curr Biol 14:1360–1366

    Article  PubMed  CAS  Google Scholar 

  • d’Adda di Fagagna F, Hande MP, Tong WM, Lansdorp PM, Wang ZQ, Jackson SP (1999) Functions of poly(ADP-ribose) polymerase in controlling telomere length and chromosomal stability. Nat Genet 23:76–80

    PubMed  CAS  Google Scholar 

  • d’Adda di Fagagna F, Hande MP, Tong WM, Roth D, Lansdorp PM, Wang ZQ, Jackson SP (2001) Effects of DNA nonhomologous end-joining factors on telomere length and chromosomal stability in mammalian cells. Curr Biol 11:1192–1196

    Article  PubMed  CAS  Google Scholar 

  • d’Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G, Carter NP, Jackson SP (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426:194–198

    Article  PubMed  CAS  Google Scholar 

  • Dai Y, Kysela B, Hanakahi LA, Manolis K, Riballo E, Stumm M, Harville TO, West SC, Oettinger MA, Jeggo PA (2003) Nonhomologous end joining and V(D)J recombination require an additional factor. Proc Natl Acad Sci U S A 100:2462–2467

    Article  PubMed  CAS  Google Scholar 

  • Dantzer F, Giraud-Panis MJ, Jaco I, Ame JC, Schultz I, Blasco M, Koering CE, Gilson E, Menissier-de Murcia J, de Murcia G, Schreiber V (2004) Functional interaction between poly(ADP-ribose) polymerase 2 (PARP-2) and TRF2: PARP activity negatively regulates TRF2. Mol Cell Biol 24:1595–1607

    Article  PubMed  CAS  Google Scholar 

  • de Lange T (2002) Protection of mammalian telomeres. Oncogene 21:532–540

    Article  PubMed  Google Scholar 

  • Ducrest A-L, Szutorisz H, Lingner J, Nabholz M (2002) Regulation of human telomerase reverse transcriptase. Oncogene 21:541–552

    Article  PubMed  CAS  Google Scholar 

  • Ellis NA, German J (1996) Molecular genetics of Bloom’s syndrome. Hum Mol Genet 5:1457–1463

    PubMed  CAS  Google Scholar 

  • Epel ES, Blackburn EH, Lin J, Dhabhar FS, Adler NE, Morrow JD, Cawthon RM (2004) Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci U S A 101:17312–17315

    Article  PubMed  CAS  Google Scholar 

  • Espejel S, Franco S, Rodriguez-Perales S, Bouffler SD, Cigudosa JC, Blasco MA (2002a) Mammalian Ku86 mediates chromosomal fusions and apoptosis caused by critically short telomeres. EMBO J 21:2207–2219

    Article  PubMed  CAS  Google Scholar 

  • Espejel S, Franco S, Sgura A, Gae D, Bailey SM, Taccioli GE, Blasco MA (2002b) Functional interaction between DNA-PKcs and telomerase in telomere length maintenance, EMBO J 21:6275–6287

    Article  PubMed  CAS  Google Scholar 

  • Espejel S, Klatt P, Menissier-de Murcia J, Martin-Caballero J, Flores JM, Taccioli G, de Murcia G, Blasco MA (2004) Impact of telomerase ablation on organismal viability, aging, and tumorigenesis in mice lacking the DNA repair proteins PARP-1, Ku86, or DNA-PKcs. J Cell Biol 167:627–638

    Article  PubMed  CAS  Google Scholar 

  • Ferguson DO, Sekiguchi JM, Chang S, Frank KM, Gao Y, DePinho RA, Alt FW (2000) The nonhomologous end-joining pathway of DNA repair is required for genomic stability and the suppression of translocations. Proc Natl Acad Sci U S A 97:6630–6633

    Article  PubMed  CAS  Google Scholar 

  • Finnon P, Silver AR, Bouffler SD (2000) Upregulation of telomerase activity by X-irradiation in mouse leukaemia cells is independent of Tert, Terc, Tnks and Myc transcription. Carcinogenesis 21:573–578

    Article  PubMed  CAS  Google Scholar 

  • Flint J, Craddock CF, Villegas A, Bentley DP, Williams HJ, Galanello R, Cao A, Wood WG, Ayyub H, Higgs DR (1994) Healing of broken human chromosomes by the addition of telomeric repeats. Am J Hum Genet 55:505–512

    PubMed  CAS  Google Scholar 

  • Franco S, van de Vrugt HJ, Fernandez P, Aracil M, Arwert F, Blasco MA (2004) Telomere dynamics in Fancg-deficient mouse and human cells. Blood 104:3927–3935

    Article  PubMed  CAS  Google Scholar 

  • Goytisolo FA, Samper E, Martin-Caballero J, Finnon P, Herrera E, Flores JM, Bouffler SD, Blasco MA (2000) Short telomeres result in organismal hypersensitivity to ionizing radiation in mammals. J Exp Med 192:1625–1636

    Article  PubMed  CAS  Google Scholar 

  • Goytisolo FA, Samper E, Edmonson S, Taccioli GE, Blasco MA (2001) The absence of the DNA-dependent protein kinase catalytic subunit in mice results in anaphase bridges and in increased telomeric fusions with normal telomere length and G-strand overhang. Mol Cell Biol 21:3642–3651

    Article  PubMed  CAS  Google Scholar 

  • Greider CW, Blackburn EH (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43:405–413

    Article  PubMed  CAS  Google Scholar 

  • Hande P, Slijepcevic P, Silver A, Bouffler S, van Buul P, Bryant P, Lansdorp P (1999) Elongated telomeres in SCID mice. Genomics 56:221–223

    Article  PubMed  CAS  Google Scholar 

  • Hande MP, Balajee AS, Tchirkov A, Wynshaw-Boris A, Lansdorp PM (2001) Extra-chromosomal telomeric DNA in cells from Atm(−/−) mice and patients with ataxia–telangiectasia, Hum Mol Genet 10:519–528

    Article  PubMed  CAS  Google Scholar 

  • Harley CB (2002) Telomerase is not an oncogene. Oncogene 21:494–502

    Article  PubMed  CAS  Google Scholar 

  • Henson JD, Neumann AA, Yeager TR, Reddel RR (2002) Alternative lengthening of telomeres in mammalian cells. Oncogene 21:598–610

    Article  PubMed  CAS  Google Scholar 

  • Hsu HL, Gilley D, Blackburn EF, Chen DJ (1999) Ku is associated with the telomere in mammals. Proc Natl Acad Sci U S A 96:12454–12458

    Article  PubMed  CAS  Google Scholar 

  • Hsu HL, Gilley D, Galande SA, Hande MP, Allen B, Kim SH, Li GC, Campisi J, Kohwi-Shigematsu T, Chen DJ (2000) Ku acts in a unique way at the mammalian telomere to prevent end joining. Genes Dev 14:2807–2812

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Li B, Gray MD, Oshima J, Mian IS, Campisi J (1998) The premature ageing syndrome protein, WRN, is a 3′→5′ exonuclease. Nat Genet 20:114–116

    Article  PubMed  CAS  Google Scholar 

  • Jaco I, Munoz P, Goytisolo F, Wesoly J, Bailey S, Taccioli G, Blasco MA (2003) Role of mammalian Rad54 in telomere length maintenance. Mol Cell Biol 23:5572–5580

    Article  PubMed  CAS  Google Scholar 

  • Jaco I, Munoz P, Blasco MA (2004) Role of human Ku86 in telomere length maintenance and telomere capping. Cancer Res 64:7271–7278

    Article  PubMed  CAS  Google Scholar 

  • Kanaar R, Hoeijmakers JHJ, van Gent DC (1998) Molecular mechanisms of DNA double strand break repair. Trends Cell Biol 8:483–489

    Article  PubMed  CAS  Google Scholar 

  • Karlseder J, Hoke K, Mirzoeva OK, Bakkenist C, Kastan MB, Petrini JH, de Lange T (2004) The telomeric protein TRF2 binds the ATM kinase and can inhibit the ATM-dependent DNA damage response. PLoS Biol 2:E240

    Article  PubMed  CAS  Google Scholar 

  • Karran P (2000) DNA double strand break repair in mammalian cells. Curr Opin Gen Dev 10:144–150

    Article  CAS  Google Scholar 

  • Kass-Eisler A, Greider CW (2000) Recombination in telomere-length maintenance. Trends Biochem Sci 25:200–204

    Article  PubMed  CAS  Google Scholar 

  • Kishi S, Lu KP (2002) A critical role for Pin2/TRF1 in ATM-dependent regulation. Inhibition of Pin2/TRF1 function complements telomere shortening, radiosensitivity, and the G(2)/M checkpoint defect of ataxia–telangiectasia cells. J Biol Chem 277:7420–7429

    Article  PubMed  CAS  Google Scholar 

  • Kitao S, Ohsugi I, Ichikawa K, Goto M, Furuichi Y, Shimamoto A (1998) Cloning of two new human helicase genes of the RecQ family: biological significance of multiple species in higher eukaryotes. Genomics 54:443–452

    Article  PubMed  CAS  Google Scholar 

  • Kramer KM, Haber JE (1993) New telomeres in yeast are initiated with a highly selected subset of TG1-3 repeats. Genes Dev 7:2345–2356

    Article  PubMed  CAS  Google Scholar 

  • Kruk PA, Rampino NJ, Bohr VA (1995) DNA damage and repair in telomeres: relation to aging. Proc Natl Acad Sci U S A 92:258–262

    Article  PubMed  CAS  Google Scholar 

  • Londono-Vallejo JA, Der-Sarkissian H, Cazes L, Bacchetti S, Reddel RR (2004) Alternative lengthening of telomeres is characterized by high rates of telomeric exchange. Cancer Res 64:2324–2327

    Article  PubMed  CAS  Google Scholar 

  • Leteurtre F, Li X, Gluckman E, Carosella ED (1997) Telomerase activity during the cell cycle and in gamma-irradiated hematopoietic cells. Leukemia 11:1681–1689

    Article  PubMed  CAS  Google Scholar 

  • Ma Y, Pannicke U, Schwarz K, Lieber MR (2002) Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 108:781–794

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto T, Shimamoto A, Goto M, Furuichi Y (1997) Impaired nuclear localization of defective DNA helicases in Werner’s syndrome. Nat Genet 16:335–336

    Article  PubMed  CAS  Google Scholar 

  • McClintock B (1941) The stability of broken ends of chromosomes of Zea mays. Genetics 23:234–282

    Google Scholar 

  • McIlrath J, Bouffler SD, Samper E, Cuthbert A, Wojcik A, Szumiel I, Bryant PE, Riches AC, Thompson A, Blasco MA, Newbold RF, Slijepcevic P (2001) Telomere length abnormalities in mammalian radiosensitive cells. Cancer Res 61:912–915

    PubMed  CAS  Google Scholar 

  • Menissier de Murcia J, Ricoul M, Tartier L, Niedergang C, Huber A, Dantzer F, Schreiber V, Ame JC, Dierich A, LeMeur M, Sabatier L, Chambon P, de Murcia G (2003) Functional interaction between PARP-1 and PARP-2 in chromosome stability and embryonic development in mouse. EMBO J 22:2255–2263

    Article  PubMed  CAS  Google Scholar 

  • Metcalfe JA, Parkhill J, Campbell L, Stacey M, Biggs P, Byrd PJ, Taylor AM (1996) Accelerated telomere shortening in ataxia telangiectasia. Nat Genet 13:350–353

    Article  PubMed  CAS  Google Scholar 

  • Meyne J, Baker RJ, Hobart HH, Hsu TC, Ryder OA, Ward OG, Wiley JE, Wurster-Hill DH, Yates TL, Moyzis RK (1990) Distribution of non-telomeric sites of the (TTAGGG)n telomeric sequence in vertebrate chromosomes. Chromosoma 99:3–10

    Article  PubMed  CAS  Google Scholar 

  • Moyzis RK, Buckingham JM, Cram LS, Dani M, Deaven LL, Jones MD, Meyne J, Ratliff RL, Wu JR (1988) A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci U S A 85:6622–6626

    Article  PubMed  CAS  Google Scholar 

  • Muller HJ (1938) The remaking of chromosomes. Collecting Net 13:181–195

    Google Scholar 

  • Myung K, Ghosh G, Fattah FJ, Li G, Kim H, Dutia A, Pak E, Smith S, Hendrickson EA (2004) Regulation of telomere length and suppression of genomic instability in human somatic cells by Ku86. Mol Cell Biol 24:5050–5059

    Article  PubMed  Google Scholar 

  • Nabetani A, Yokoyama O, Ishikawa F (2004) Localization of hRad9, hHus1, hRad1, and hRad17 and caffeine-sensitive DNA replication at the alternative lengthening of telomeres-associated promyelocytic leukemia body. J Biol Chem 279:25849–25857

    Article  PubMed  CAS  Google Scholar 

  • Neuhof D, Ruess A, Wenz F, Weber KJ (2001) Induction of telomerase activity by irradiation in human lymphoblasts. Radiat Res 155:693–697

    Article  PubMed  CAS  Google Scholar 

  • Okabe J, Eguchi A, Masago A, Hayakawa T, Nakanishi M (2000) TRF1 is a critical trans-acting factor required for de novo telomere formation in human cells. Hum Mol Genet 9:2639–2650

    Article  PubMed  CAS  Google Scholar 

  • Opresko PL, von Kobbe C, Laine JP, Harrigan J, Hickson ID, Bohr VA (2002) Telomere-binding protein TRF2 binds to and stimulates the Werner and Bloom syndrome helicases. J Biol Chem 277:41110–41119

    Article  PubMed  CAS  Google Scholar 

  • Ranganathan V, Heine WF, Ciccone DN, Rudolph KL, Wu X, Chang S, Hai H, Ahearn IM, Livingston DM, Resnick I, Rosen F, Seemanova E, Jarolim P, DePinho RA, Weaver DT (2001) Rescue of a telomere length defect of Nijmegen breakage syndrome cells requires NBS and telomerase catalytic subunit. Curr Biol 11:962–966

    Article  PubMed  CAS  Google Scholar 

  • Riballo E, Kuhne M, Rief N, Doherty A, Smith GC, Recio MJ, Reis C, Dahm K, Fricke A, Krempler A, Parker AR, Jackson SP, Gennery A, Jeggo PA, Lobrich M (2004) A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to gamma-H2AX foci. Mol Cell 16:715–724

    Article  PubMed  CAS  Google Scholar 

  • Riha K, Watson JM, Parkey J, Shippen DE (2002) Telomere length deregulation and enhanced sensitivity to genotoxic stress in Arabidopsis mutants deficient in Ku70. EMBO J 21:2819–2826

    Article  PubMed  CAS  Google Scholar 

  • Samper E, Goytisolo FA, Slijepcevic P, van Buul PP, Blasco MA (2000) Mammalian Ku86 protein prevents telomeric fusions independently of the length of TTAGGG repeats and the G-strand overhang. EMBO Rep 1:244–252

    Article  PubMed  CAS  Google Scholar 

  • Samper E, Goytisolo FA, Menissier-de Murcia J, Gonzalez-Suarez E, Cigudosa JC, de Murcia G, Blasco MA (2001) Normal telomere length and chromosomal end capping in poly(ADP-ribose) polymerase-deficient mice and primary cells despite increased chromosomal instability. J Cell Biol 154:49–60

    Article  PubMed  CAS  Google Scholar 

  • Shiloh Y (2003) ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3:155–168

    Article  PubMed  CAS  Google Scholar 

  • Slijepcevic P, Hande MP, Bouffler SD, Lansdorp P, Bryant PE (1997) Telomere length, chromatin structure and chromosome fusigenic potential. Chromosoma 106:413–421

    Article  PubMed  CAS  Google Scholar 

  • Smith GCM, Jackson SP (1999) The DNA-dependent protein kinase. Genes Dev 13:916–934

    PubMed  CAS  Google Scholar 

  • Smogorzewska A, Karlseder J, Holtgreve-Grez H, Jauch A, de Lange T (2002) DNA ligase IV-dependent NHEJ of deprotected mammalian telomeres in G1 and G2. Curr Biol 12:1635–1644

    Article  PubMed  CAS  Google Scholar 

  • Song K, Jung Y, Jung D, Lee I (2001) Human Ku70 interacts with heterochromatin protein 1alpha. J Biol Chem 276:8321–8327

    Article  PubMed  CAS  Google Scholar 

  • Taccioli GE, Amatucci AG, Beamish HJ, Gell D, Xiang XH, Torres Arzayus MI, Priestley A, Jackson SP, Marshak Rothstein A, Jeggo PA, Herrera VL (1998) Targeted disruption of the catalytic subunit of the DNA-PK gene in mice confers severe combined immunodeficiency and radiosensitivity. Immunity 9:355–366

    Article  PubMed  CAS  Google Scholar 

  • Takai H, Smogorzewska A, de Lange T (2003) DNA damage foci at dysfunctional telomeres. Curr Biol 13:1549–1556

    Article  PubMed  CAS  Google Scholar 

  • Tarsounas M, Munoz P, Claas A, Smiraldo PG, Pittman DL, Blasco MA, West SC (2004) Telomere maintenance requires the RAD51D recombination/repair protein. Cell 117:337–347

    Article  PubMed  CAS  Google Scholar 

  • Wang RC, Smogorzewska A, de Lange T (2004) Homologous recombination generates T-loop-sized deletions at human telomeres. Cell 119:355–368

    Article  PubMed  CAS  Google Scholar 

  • Weeda G, Donker I, de Wit J, Morreau H, Janssens R, Vissers CJ, Nigg A, van Steeg H, Bootsma D, Hoeijmakers JH (1997) Disruption of mouse ERCC1 results in a novel repair syndrome with growth failure, nuclear abnormalities and senescence. Curr Biol 7:427–439

    Article  PubMed  CAS  Google Scholar 

  • Wilkie AO, Lamb J, Harris PC, Finney RD, Higgs DR (1990) A truncated human chromosome 16 associated with alpha thalassaemia is stabilized by addition of telomeric repeat (TTAGGG)n. Nature 346:868–871

    Article  PubMed  CAS  Google Scholar 

  • Wong H-P, Slijepcevic P (2004) Telomere length measurement in mouse chromosomes by a modified Q-FISH method. Cytogenet Genome Res 105:464–470

    Article  PubMed  CAS  Google Scholar 

  • Wong KK, Chang S, Weiler SR, Ganesan S, Chaudhuri J, Zhu C, Artandi SE, Rudolph KL, Gottlieb GJ, Chin L, Alt FW, DePinho RA (2000) Telomere dysfunction impairs DNA repair and enhances sensitivity to ionizing radiation. Nat Genet 26:85–88

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Jiang X, Lee WH, Chen PL (2003a) Assembly of functional ALT-associated promyelocytic leukemia bodies requires Nijmegen breakage syndrome 1. Cancer Res 63:2589–2595

    PubMed  CAS  Google Scholar 

  • Wu X, Amos CI, Zhu Y, Zhao H, Grossman BH, Shay JW, Luo S, Hong WK, Spitz MR (2003b) Telomere dysfunction: a potential cancer predisposition factor. J Natl Cancer Inst 95:1211–1218

    Article  PubMed  CAS  Google Scholar 

  • Zhu XD, Kuster B, Mann M, Petrini JH, de Lange T (2000) Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres. Nat Genet 25:347–352

    Article  PubMed  CAS  Google Scholar 

  • Zhu XD, Niedernhofer L, Kuster B, Mann M, Hoeijmakers JH, de Lange T (2003) ERCC1/XPF removes the 3′ overhang from uncapped telomeres and represses formation of telomeric DNA-containing double minute chromosomes. Mol Cell 12:1489–1498

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Work in the laboratory of P. S. is supported by grants from the Department of Health (RRX97) and the European Commission Euratom programme (contract FIGH-CT-2002-00217). S. A. W. is supported by a doctoral fellowship from the Saudi Arabia Ministry of Health. We would like to apologise to those authors whose works may be relevant for this review, but were not quoted due to space limitation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Predrag Slijepcevic.

Additional information

Communicated by D. Griffin

Review related to the 15th International Chromosome Conference (ICC XV), held in September 2004, Brunel University, London, UK

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slijepcevic, P., Al-Wahiby, S. Telomere biology: integrating chromosomal end protection with DNA damage response. Chromosoma 114, 275–285 (2005). https://doi.org/10.1007/s00412-005-0338-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-005-0338-4

Keywords

Navigation