Skip to main content
Log in

Cuts can kill: the roles of apoptotic nucleases in cell death and animal development

  • Review
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Chromosome fragmentation is one of the major biochemical hallmarks of apoptosis. However, until recently, its roles in apoptosis and mechanisms of action remained elusive. Recent biochemical and genetic studies have shown that chromosome fragmentation is a complex biochemical process that involves a plethora of conserved nucleases with distinct nuclease activities and substrate specificities. These apoptotic nucleases act cooperatively among themselves and with other nonnuclease cofactors to promote stepwise chromosome fragmentation and DNA degradation. Importantly, in addition to its direct contribution to the dismantling of the dying cell, apoptotic DNA degradation can facilitate cell killing and other apoptotic events such as clearance of apoptotic cells. Furthermore, some apoptotic nucleases apparently affect other aspects of animal development, including immune responses. The identification of new apoptotic nucleases and analysis of their functions in apoptosis and animal development should pave the way for future studies to uncover new functions for apoptotic nucleases and shed light on the hidden links between apoptotic DNA degradation and human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bambara RA, Murante RS, Henricksen LA (1997) Enzymes and reactions at the eukaryotic DNA replication fork. J Biol Chem 272:4647–4650

    Article  PubMed  CAS  Google Scholar 

  • Brouwer R, Vree Egberts WT, Hengstman GJ, Raijmakers R, van Engelen BG, Seelig HP, Renz M, Mierau R, Genth E, Pruijn GJ, van Venrooij WJ (2002) Autoantibodies directed to novel components of the PM/Scl complex, the human exosome. Arthritis Res 4:134–138

    Article  PubMed  CAS  Google Scholar 

  • Cande C, Vahsen N, Kouranti I, Schmitt E, Daugas E, Spahr C, Luban J, Kroemer RT, Giordanetto F, Garrido C, Penninger JM, Kroemer G (2004) AIF and cyclophilin A cooperate in apoptosis-associated chromatinolysis. Oncogene 23:1514–1521

    Article  PubMed  CAS  Google Scholar 

  • Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219

    Article  PubMed  CAS  Google Scholar 

  • Daugas E, Nochy D, Ravagnan L, Loeffler M, Susin SA, Zamzami N, Kroemer G (2000) Apoptosis-inducing factor (AIF): a ubiquitous mitochondrial oxidoreductase involved in apoptosis. FEBS Lett 476:118–123

    Article  PubMed  CAS  Google Scholar 

  • Dominski Z, Yang XC, Kaygun H, Dadlez M, Marzluff WF (2003) A 3' exonuclease that specifically interacts with the 3' end of histone mRNA. Mol Cell 12:295–305

    Article  PubMed  CAS  Google Scholar 

  • Durrieu F, Samejima K, Fortune JM, Kandels-Lewis S, Osheroff N, Earnshaw WC (2000) DNA topoisomerase IIalpha interacts with CAD nuclease and is involved in chromatin condensation during apoptotic execution. Curr Biol 10:923–926

    Article  PubMed  CAS  Google Scholar 

  • Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391:43–50

    Article  PubMed  CAS  Google Scholar 

  • Fournie GJ (1988) Circulating DNA and lupus nephritis. Kidney Int 33:487–497

    Article  PubMed  CAS  Google Scholar 

  • Frisoni L, McPhie L, Colonna L, Sriram U, Monestier M, Gallucci S, Caricchio R (2005) Nuclear autoantigen translocation and autoantibody opsonization lead to increased dendritic cell phagocytosis and presentation of nuclear antigens: a novel pathogenic pathway for autoimmunity? J Immunol 175:2692–2701

    PubMed  CAS  Google Scholar 

  • Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501

    Article  PubMed  CAS  Google Scholar 

  • Hedgecock EM, Sulston JE, Thomson JN (1983) Mutations affecting programmed cell deaths in the nematode Caenorhabditis elegans. Science 220:1277–1279

    Article  PubMed  CAS  Google Scholar 

  • Hevelone J, Hartman PS (1988) An endonuclease from Caenorhabditis elegans: partial purification and characterization. Biochem Genet 26:447–461

    Article  PubMed  CAS  Google Scholar 

  • Irvine RA, Adachi N, Shibata DK, Cassell GD, Yu K, Karanjawala ZE, Hsieh CL, Lieber MR (2005) Generation and characterization of endonuclease G null mice. Mol Cell Biol 25:294–302

    Article  PubMed  CAS  Google Scholar 

  • Joza N, Susin SA, Daugas E, Stanford WL, Cho SK, Li CY, Sasaki T, Elia AJ, Cheng HY, Ravagnan L, Ferri KF, Zamzami N, Wakeham A, Hakem R, Yoshida H, Kong YY, Mak TW, Zuniga-Pflucker JC, Kroemer G, Penninger JM (2001) Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410:549–554

    Article  PubMed  CAS  Google Scholar 

  • Joza N, Oudit GY, Brown D, Benit P, Kassiri Z, Vahsen N, Benoit L, Patel MM, Nowikovsky K, Vassault A, Backx PH, Wada T, Kroemer G, Rustin P, Penninger JM (2005) Muscle-specific loss of apoptosis-inducing factor leads to mitochondrial dysfunction, skeletal muscle atrophy, and dilated cardiomyopathy. Mol Cell Biol 25:10261–10272

    Article  PubMed  CAS  Google Scholar 

  • Kalinowska M, Garncarz W, Pietrowska M, Garrard WT, Widlak P (2005) Regulation of the human apoptotic DNase/RNase Endonuclease G: involvement of Hsp70 and ATP. Apoptosis 10:821–830

    Article  PubMed  CAS  Google Scholar 

  • Kawane K, Fukuyama H, Kondoh G, Takeda J, Ohsawa Y, Uchiyama Y, Nagata S (2001) Requirement of DNase II for definitive erythropoiesis in the mouse fetal liver. Science 292:1546–1549

    Article  PubMed  CAS  Google Scholar 

  • Kawane K, Fukuyama H, Yoshida H, Nagase H, Ohsawa Y, Uchiyama Y, Okada K, Iida T, Nagata S (2003) Impaired thymic development in mouse embryos deficient in apoptotic DNA degradation. Nat Immunol 4:138–144

    Article  PubMed  CAS  Google Scholar 

  • Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    PubMed  CAS  Google Scholar 

  • Klein JA, Longo-Guess CM, Rossmann MP, Seburn KL, Hurd RE, Frankel WN, Bronson RT, Ackerman SL (2002) The harlequin mouse mutation downregulates apoptosis-inducing factor. Nature 419:367–374

    Article  PubMed  CAS  Google Scholar 

  • Krieser RJ, MacLea KS, Longnecker DS, Fields JL, Fiering S, Eastman A (2002) Deoxyribonuclease IIalpha is required during the phagocytic phase of apoptosis and its loss causes perinatal lethality. Cell Death Differ 9:956–962

    Article  PubMed  CAS  Google Scholar 

  • Lieber MR (1997) The FEN-1 family of structure-specific nucleases in eukaryotic DNA replication, recombination and repair. Bioessays 19:233–240

    Article  PubMed  CAS  Google Scholar 

  • Li X, Li J, Harrington J, Lieber MR, Burgers PM (1995) Lagging strand DNA synthesis at the eukaryotic replication fork involves binding and stimulation of FEN-1 by proliferating cell nuclear antigen. J Biol Chem 270:22109–22112

    Article  PubMed  CAS  Google Scholar 

  • Li LY, Luo X, Wang X (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412:95–99

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Zou H, Slaughter C, Wang X (1997) DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89:175–184

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Li P, Widlak P, Zou H, Luo X, Garrard WT, Wang X (1998) The 40-kDa subunit of DNA fragmentation factor induces DNA fragmentation and chromatin condensation during apoptosis. Proc Natl Acad Sci U S A 95:8461–8466

    Article  PubMed  CAS  Google Scholar 

  • Lyon CJ, Evans CJ, Bill BR, Otsuka AJ, Aguilera RJ (2000) The C. elegans apoptotic nuclease NUC-1 is related in sequence and activity to mammalian DNase II. Gene 252:147–154

    Article  PubMed  CAS  Google Scholar 

  • McIlroy D, Sakahira H, Talanian RV, Nagata S (1999) Involvement of caspase 3-activated DNase in internucleosomal DNA cleavage induced by diverse apoptotic stimuli. Oncogene 18:4401–4408

    Article  PubMed  CAS  Google Scholar 

  • McIlroy D, Tanaka M, Sakahira H, Fukuyama H, Suzuki M, Yamamura K, Ohsawa Y, Uchiyama Y, Nagata S (2000) An auxiliary mode of apoptotic DNA fragmentation provided by phagocytes. Genes Dev 14:549–558

    PubMed  CAS  Google Scholar 

  • Mitchell P, Petfalski E, Shevchenko A, Mann M, Tollervey D (1997) The exosome: a conserved eukaryotic RNA processing complex containing multiple 3'→5' exoribonucleases. Cell 91:457–466

    Article  PubMed  CAS  Google Scholar 

  • Mukae N, Yokoyama H, Yokokura T, Sakoyama Y, Nagata S (2002) Activation of the innate immunity in Drosophila by endogenous chromosomal DNA that escaped apoptotic degradation. Genes Dev 16:2662–2671

    Article  PubMed  CAS  Google Scholar 

  • Nagata S (2000) Apoptotic DNA fragmentation. Exp Cell Res 256:12–18

    Article  PubMed  CAS  Google Scholar 

  • Napirei M, Karsunky H, Zevnik B, Stephan H, Mannherz HG, Moroy T (2000) Features of systemic lupus erythematosus in DNase1-deficient mice. Nat Genet 25:177–181

    Article  PubMed  CAS  Google Scholar 

  • Olariu A, Cleaver KM, Shore LE, Brewer MD, Cameron HA (2005) A natural form of learning can increase and decrease the survival of new neurons in the dentate gyrus. Hippocampus 15:750–762

    Article  PubMed  Google Scholar 

  • Parrish JZ, Xue D (2003) Functional genomic analysis of apoptotic DNA degradation in C. elegans. Mol Cell 11:987–996

    Article  PubMed  CAS  Google Scholar 

  • Parrish J, Li L, Klotz K, Ledwich D, Wang X, Xue D (2001) Mitochondrial endonuclease G is important for apoptosis in C. elegans. Nature 412:90–94

    Article  PubMed  CAS  Google Scholar 

  • Parrish JZ, Yang C, Shen B, Xue D (2003) CRN-1, a Caenorhabditis elegans FEN-1 homologue, cooperates with CPS-6/EndoG to promote apoptotic DNA degradation. EMBO J 22:3451–3460

    Article  PubMed  CAS  Google Scholar 

  • Qiu J, Yoon JH, Shen B (2005) Search for apoptotic nucleases in yeast: role of Tat-D nuclease in apoptotic DNA degradation. J Biol Chem 280:15370–15379

    Article  PubMed  CAS  Google Scholar 

  • Radic M, Marion T, Monestier M (2004) Nucleosomes are exposed at the cell surface in apoptosis. J Immunol 172:6692–6700

    PubMed  CAS  Google Scholar 

  • Sakahira H, Enari M, Nagata S (1998) Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391:96–99

    Article  PubMed  CAS  Google Scholar 

  • Samejima K, Earnshaw WC (2005) Trashing the genome: the role of nucleases during apoptosis. Nat Rev Mol Cell Biol 6:677–688

    Article  PubMed  CAS  Google Scholar 

  • Samejima K, Tone S, Earnshaw WC (2001) CAD/DFF40 nuclease is dispensable for high molecular weight DNA cleavage and stage I chromatin condensation in apoptosis. J Biol Chem 276:45427–45432

    Article  PubMed  CAS  Google Scholar 

  • Slane JM, Lee HS, Vorhees CV, Zhang J, Xu M (2000) DNA fragmentation factor 45 deficient mice exhibit enhanced spatial learning and memory compared to wild-type control mice. Brain Res 867:70–79

    Article  PubMed  CAS  Google Scholar 

  • Slane McQuade JM, Vorhees CV, Xu M, Zhang J (2002) DNA fragmentation factor 45 knockout mice exhibit longer memory retention in the novel object recognition task compared to wild-type mice. Physiol Behav 76:315–320

    Article  PubMed  Google Scholar 

  • Sulston JE (1976) Post-embryonic development in the ventral cord of Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 275:287–297

    Article  PubMed  CAS  Google Scholar 

  • Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N, Mihara S, Sakane T (1997) Development of pathogenic anti-DNA antibodies in patients with systemic lupus erythematosus. FASEB J 11:1033–1038

    PubMed  CAS  Google Scholar 

  • Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267:1456–1462

    Article  PubMed  CAS  Google Scholar 

  • Vahsen N, Cande C, Briere JJ, Benit P, Joza N, Larochette N, Mastroberardino PG, Pequignot MO, Casares N, Lazar V, Feraud O, Debili N, Wissing S, Engelhardt S, Madeo F, Piacentini M, Penninger JM, Schagger H, Rustin P, Kroemer G (2004) AIF deficiency compromises oxidative phosphorylation. EMBO J 23:4679–4689

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Yang C, Chai J, Shi Y, Xue D (2002) Mechanisms of AIF-mediated apoptotic DNA degradation in Caenorhabditis elegans. Science 298:1587–1592

    Article  PubMed  CAS  Google Scholar 

  • Widlak P, Garrard WT (2005) Discovery, regulation, and action of the major apoptotic nucleases DFF40/CAD and endonuclease G. J Cell Biochem 94:1078–1087

    Article  PubMed  CAS  Google Scholar 

  • Widlak P, Li P, Wang X, Garrard WT (2000) Cleavage preferences of the apoptotic endonuclease DFF40 (caspase-activated DNase or nuclease) on naked DNA and chromatin substrates. J Biol Chem 275:8226–8232

    Article  PubMed  CAS  Google Scholar 

  • Widlak P, Li LY, Wang X, Garrard WT (2001) Action of recombinant human apoptotic endonuclease G on naked DNA and chromatin substrates: cooperation with exonuclease and DNase I. J Biol Chem 276:48404–48409

    PubMed  CAS  Google Scholar 

  • Wissing S, Ludovico P, Herker E, Buttner S, Engelhardt SM, Decker T, Link A, Proksch A, Rodrigues F, Corte-Real M, Frohlich KU, Manns J, Cande C, Sigrist SJ, Kroemer G, Madeo F (2004) An AIF orthologue regulates apoptosis in yeast. J Cell Biol 166:969–974

    Article  PubMed  CAS  Google Scholar 

  • Wu YC, Stanfield GM, Horvitz HR (2000) NUC-1, a Caenorhabditis elegans DNase II homolog, functions in an intermediate step of DNA degradation during apoptosis. Genes Dev 14:536–548

    PubMed  CAS  Google Scholar 

  • Wyllie AH (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284:555–556

    Article  PubMed  CAS  Google Scholar 

  • Yasutomo K, Horiuchi T, Kagami S, Tsukamoto H, Hashimura C, Urushihara M, Kuroda Y (2001) Mutation of DNASE1 in people with systemic lupus erythematosus. Nat Genet 28:313–314

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama H, Mukae N, Sakahira H, Okawa K, Iwamatsu A, Nagata S (2000) A novel activation mechanism of caspase-activated DNase from Drosophila melanogaster. J Biol Chem 275:12978–12986

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Xu M (2002) Apoptotic DNA fragmentation and tissue homeostasis. Trends Cell Biol 12:84–89

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Liu X, Scherer DC, van Kaer L, Wang X, Xu M (1998) Resistance to DNA fragmentation and chromatin condensation in mice lacking the DNA fragmentation factor 45. Proc Natl Acad Sci U S A 95:12480–12485

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Wang X, Bove KE, Xu M (1999) DNA fragmentation factor 45-deficient cells are more resistant to apoptosis and exhibit different dying morphology than wild-type control cells. J Biol Chem 274:37450–37454

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Lee H, Lou DW, Bovin GP, Xu M (2000) Lack of obvious 50 kilobase pair DNA fragments in DNA fragmentation factor 45-deficient thymocytes upon activation of apoptosis. Biochem Biophys Res Commun 274:225–229

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Lee H, Agarwala A, Wen Lou D, Xu M (2001) Dna fragmentation factor 45 mutant mice exhibit resistance to kainic acid-induced neuronal cell death. Biochem Biophys Res Commun 285:1143–1149

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Dong M, Li L, Fan Y, Pathre P, Dong J, Lou D, Wells JM, Olivares-Villagomez D, Van Kaer L, Wang X, Xu M (2003) Endonuclease G is required for early embryogenesis and normal apoptosis in mice. Proc Natl Acad Sci U S A 100:15782–15787

    Article  PubMed  CAS  Google Scholar 

  • Zheng L, Zhou M, Chai Q, Parrish J, Xue D, Patrick SM, Turchi JJ, Yannone SM, Chen D, Shen B (2005) Novel function of the flap endonuclease 1 complex in processing stalled DNA replication forks. EMBO Rep 6:83–89

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

J.P. was supported by a National Science foundation (NSF) graduate research fellowship. D.X. was supported by a Burroughs Wellcome Fund Career Award, a Searle Scholar Award, and research grants from the National Institutes of Health (NIH) and Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ding Xue.

Additional information

Communicated by E.A. Nigg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parrish, J.Z., Xue, D. Cuts can kill: the roles of apoptotic nucleases in cell death and animal development. Chromosoma 115, 89–97 (2006). https://doi.org/10.1007/s00412-005-0038-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-005-0038-0

Keywords

Navigation