Skip to main content

Advertisement

Log in

BRCA1 associates with the inactive X chromosome in late S-phase, coupled with transient H2AX phosphorylation

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The BRCA1 tumor suppressor gene encodes an E3-ubiquitin ligase that has been implicated in several distinct biochemical processes. As the cell cycle progresses, BRCA1 proteins interact transiently with nuclear foci containing DNA replication and DNA double-strand repair machinery. A hallmark of these foci is the presence of S139 phosphorylated histone H2AX. BRCA1 was recently shown to associate with facultative heterochromatin at the inactive X chromosome (Xi), where it may play a role in maintaining gene silencing. As the kinetics of this interaction has not been described, we sought to establish whether association of BRCA1 with the Xi also correlated with replication. Here we demonstrate that the interaction of BRCA1 and the Xi is transient, occurring during late S-phase. This interaction is concomitant with the presence of distinct foci of S139 phospho-H2AX and specifically corresponds with late replication of the Xi. BRCA1 and phospho-H2AX appear on the Xi immediately adjacent to CAF-1, a known marker of replication fork activity. Taken together, these data implicate BRCA1 and the H2AX kinase in replication of facultative heterochromatin on the Xi, most likely in a fashion similar to that performed at sites of DNA replication and double-strand break repair observed on somatic chromosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bochar DA, Wang L, Beniya H, Kinev A, Xue Y, Lane WS, Wang W, Kashanchi F, Shiekhattar R (2000) BRCA1 is associated with a human SWI/SNF-related complex: linking chromatin remodeling to breast cancer. Cell 102:257–265

    Article  PubMed  CAS  Google Scholar 

  • Brockdorff N, Ashworth A, Kay GF, McCabe VM, Norris DP, Cooper PJ, Swift S, Rastan S (1992) The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell 71:515–526

    Article  PubMed  CAS  Google Scholar 

  • Brown CJ, Willard HF (1994) The human X-inactivation centre is not required for maintenance of X-chromosome inactivation. Nature 368:154–156

    Article  PubMed  CAS  Google Scholar 

  • Brown CJ, Hendrich BD, Rupert JL, Lafreniere RG, Xing Y, Lawrence J, Willard HF (1992) The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71:527–542

    Article  PubMed  CAS  Google Scholar 

  • Cantor S, Drapkin R, Zhang F, Lin Y, Han J, Pamidi S, Livingston DM (2004) The BRCA1-associated protein BACH1 is a DNA helicase targeted by clinically relevant inactivating mutations. Proc Natl Acad Sci U S A 101:2357–2362

    Article  PubMed  CAS  Google Scholar 

  • Chadwick BP, Willard HF (2001) Histone H2A variants and the inactive X chromosome: identification of a second macroH2A variant. Hum Mol Genet 10:1101–1013

    Article  Google Scholar 

  • Chadwick BP, Willard HF (2002) Cell cycle-dependent localization of macroH2A in chromatin of the inactive X chromosome. J Cell Biol 157:1113–1123

    Article  PubMed  CAS  Google Scholar 

  • Chadwick BP, Willard HF (2003) Barring gene expression after XIST: maintaining facultative heterochromatin on the inactive X. Semin Cell Dev Biol 14:359–367

    Article  PubMed  CAS  Google Scholar 

  • Chadwick BP, Willard HF (2004) Multiple spatially distinct types of facultative heterochromatin on the human inactive X chromosome. Proc Natl Acad Sci U S A 101:17450–17455

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Farmer AA, Chen CF, Jones DC, Chen PL, Lee WH (1996) BRCA1 is a 220-kDa nuclear phosphoprotein that is expressed and phosphorylated in a cell cycle-dependent manner. Cancer Res 56:3168–3172

    PubMed  CAS  Google Scholar 

  • Clemson CM, McNeil JA, Willard HF, Lawrence JB (1996) XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J Cell Biol 132:1–17

    Article  Google Scholar 

  • Costanzi C, Pehrson JR (1998) Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature 393:599–601

    Article  PubMed  CAS  Google Scholar 

  • Csankovszki G, Panning B, Bates B, Pehrson JR, Jaenisch R (1999) Conditional deletion of Xist disrupts histone macroH2A localization but not maintenance of X inactivation. Nat Genet 22:323–324

    Article  PubMed  CAS  Google Scholar 

  • Csankovszki G, Nagy A, Jaenisch R (2001) Synergism of Xist RNA, DNA methylation, and histone hypoacetylation in maintaining X chromosome inactivation. J Cell Biol 153:773–784

    Article  PubMed  CAS  Google Scholar 

  • de Napoles M, Mermoud JE, Wakao R, Tang YA, Endoh M, Appanah R, Nesterova TB, Silva J, Otte AP, Vidal M, Koseki H, Brockdorff N (2004) Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev Cell 7:663–676

    Article  PubMed  Google Scholar 

  • Deming PB, Cistulli CA, Zhao H, Graves PR, Piwnica-Worms H, Paules RS, Downes CS, Kaufmann WK (2001) The human decatenation checkpoint. Proc Natl Acad Sci U S A 98:12044–12049

    Article  PubMed  CAS  Google Scholar 

  • Ehrenhofer-Murray AE (2004) Chromatin dynamics at DNA replication, transcription and repair. Eur J Biochem 271:2335–2349

    Article  PubMed  CAS  Google Scholar 

  • Fang J, Chen T, Chadwick B, Li E, Zhang Y (2004) Ring1b-mediated H2A ubiquitination associates with inactive X chromosomes and is involved in initiation of X inactivation. J Biol Chem 279:52812–52815

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Capetillo O, Mahadevaiah SK, Celeste A, Romanienko PJ, Camerini-Otero RD, Bonner WM, Manova K, Burgoyne P, Nussenzweig A (2003) H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Dev Cell 4:497–508

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Capetillo O, Lee A, Nussenzweig M, Nussenzweig A (2004) H2AX: the histone guardian of the genome. DNA Repair 3:959–967

    Article  PubMed  CAS  Google Scholar 

  • Ganesan S, Silver DP, Greenberg RA, Avni D, Drapkin R, Miron A, Mok SC, Randrianarison V, Brodie S, Salstrom J, Rasmussen TP, Klimke A, Marrese C, Marahrens Y, Deng CX, Feunteun J, Livingston DM (2002) BRCA1 supports XIST RNA concentration on the inactive X chromosome. Cell 111:393–405

    Article  PubMed  CAS  Google Scholar 

  • Gilbert CW, Muldal S, Lajthal LG, Rowley J (1962) Time-sequence of human chromosome duplication. Nature 195:869–873

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Munoz I, Lund AH, van der Stoop P, Boutsma E, Muijrers I, Verhoeven E, Nusinow DA, Panning B, Marahrens Y, van Lohuizen M (2005) Stable X chromosome inactivation involves the PRC1 Polycomb complex and requires histone MACROH2A1 and the CULLIN3/SPOP ubiquitin E3 ligase. Proc Natl Acad Sci U S A 102:7635–7640

    Article  PubMed  CAS  Google Scholar 

  • Jin Y, Xu XL, Yang MC, Wei F, Ayi TC, Bowcock AM, Baer R (1997) Cell cycle-dependent colocalization of BARD1 and BRCA1 proteins in discrete nuclear domains. Proc Natl Acad Sci U S A 94:12075–12080

    Article  PubMed  CAS  Google Scholar 

  • Lane TF (2004) BRCA1 and transcription. Cancer Biol Ther 3:528–533

    PubMed  CAS  Google Scholar 

  • Lou Z, Minter-Dykhouse K, Chen J (2005) BRCA1 participates in DNA decatenation. Nat Struct Mol Biol 12:589–593

    Article  PubMed  CAS  Google Scholar 

  • Lowndes NF, Toh GW (2005) DNA repair: the importance of phosphorylating histone H2AX. Curr Biol 15:R99–R102

    Article  PubMed  CAS  Google Scholar 

  • Lyon MF (1961) Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190:372–373

    Article  PubMed  CAS  Google Scholar 

  • McManus KJ, Hendzel MJ (2005) ATM-dependent DNA damage-independent mitotic phosphorylation of H2AX in normally growing mammalian cells. Mol Cell Biol (Epub ahead of print). DOI 10.1091/mbc.E05-01-0065

  • Morishma A, Grumbach MM, Taylor JH (1962) Asynchronous duplication of human chromosomes and the origin of sex chromatin. Proc Natl Acad Sci U S A 48:756–763

    Article  Google Scholar 

  • Neish AS, Anderson SF, Schlegel BP, Wei W, Parvin JD (1998) Factors associated with the mammalian RNA polymerase II holoenzyme. Nucleic Acids Res 26:847–853

    Article  PubMed  CAS  Google Scholar 

  • Niimi A, Suka N, Harata M, Kikuchi A, Mizuno S (2001) Co-localization of chicken DNA topoisomerase IIalpha, but not beta, with sites of DNA replication and possible involvement of a C-terminal region of alpha through its binding to PCNA. Chromosoma 110:102–114

    Article  PubMed  CAS  Google Scholar 

  • Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM (2000) A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 10:886–895

    Article  PubMed  CAS  Google Scholar 

  • Plath K, Mlynarczyk-Evans S, Nusinow DA, Panning B (2002) Xist RNA and the mechanism of x chromosome inactivation. Annu Rev Genet 36:233–278

    Article  PubMed  CAS  Google Scholar 

  • Plath K, Talbot D, Hamer KM, Otte AP, Yang TP, Jaenisch R, Panning B (2004) Developmentally regulated alterations in Polycomb repressive complex 1 proteins on the inactive X chromosome. J Cell Biol 167:1025–1035

    Article  PubMed  CAS  Google Scholar 

  • Rack KA, Chelly J, Gibbons RJ, Rider S, Benjamin D, Lafreniere RG, Oscier D, Hendriks RW, Craig IW, Willard HF, Monaco AP, Buckle VJ (1994) Absence of the XIST gene from late-replicating isodicentric X chromosomes in leukaemia. Hum Mol Genet 3:1053–1059

    Article  PubMed  CAS  Google Scholar 

  • Rahman N, Stratton MR (1998) The genetics of breast cancer susceptibility. Annu Rev Genet 32:95–121

    Article  PubMed  CAS  Google Scholar 

  • Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858–5868

    Article  PubMed  CAS  Google Scholar 

  • Scully R, Chen J, Plug A, Xiao Y, Weaver D, Feunteun J, Ashley T, Livingston DM (1997) Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell 88:265–275

    Article  PubMed  CAS  Google Scholar 

  • Shibahara K, Stillman B (1999) Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell 96:575–585

    Article  PubMed  CAS  Google Scholar 

  • Shroff R, Arbel-Eden A, Pilch D, Ira G, Bonner WM, Petrini JH, Haber JE, Lichten M (2004) Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break. Curr Biol 14:1703–1711

    Article  PubMed  CAS  Google Scholar 

  • Skoufias DA, Lacroix FB, Andreassen PR, Wilson L, Margolis RL (2004) Inhibition of DNA decatenation, but not DNA damage, arrests cells at metaphase. Mol Cell 15:977–990

    Article  PubMed  CAS  Google Scholar 

  • Spector DL, Goldman RD, Leinwand LA (1998) Cells: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Starita LM, Parvin JD (2003) The multiple nuclear functions of BRCA1: transcription, ubiquitination and DNA repair. Curr Opin Cell Biol 15:345–350

    Article  PubMed  CAS  Google Scholar 

  • Turner JM, Aprelikova O, Xu X, Wang R, Kim S, Chandramouli GV, Barrett JC, Burgoyne PS, Deng CX (2004) BRCA1, histone H2AX phosphorylation, and male meiotic sex chromosome inactivation. Curr Biol 14:2135–2142

    Article  PubMed  CAS  Google Scholar 

  • Vermaak D, Ahmad K, Henikoff S (2003) Maintenance of chromatin states: an open-and-shut case. Curr Opin Cell Biol 15:266–274

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, Jones RS, Zhang Y (2004) Role of histone H2A ubiquitination in Polycomb silencing. Nature 431:873–878

    Article  PubMed  CAS  Google Scholar 

  • Wutz A, Jaenisch R (2000) A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation. Mol Cell 5:695–705

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Aprelikova O, Moens P, Deng CX, Furth PA (2003) Impaired meiotic DNA-damage repair and lack of crossing-over during spermatogenesis in BRCA1 full-length isoform deficient mice. Development 130:2001–2012

    Article  PubMed  CAS  Google Scholar 

  • Ye Q, Hu YF, Zhong H, Nye AC, Belmont AS, Li R (2001) BRCA1-induced large-scale chromatin unfolding and allele-specific effects of cancer-predisposing mutations. J Cell Biol 155:911–921

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Shibahara K, Stillman B (2000) PCNA connects DNA replication to epigenetic inheritance in yeast. Nature 408:221–225

    Article  PubMed  CAS  Google Scholar 

  • Zhong Q, Chen CF, Li S, Chen Y, Wang CC, Xiao J, Chen PL, Sharp ZD, Lee WH (1999) Association of BRCA1 with the hRad50-hMre11-p95 complex and the DNA damage response. Science 285:747–750

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Lisa Chadwick for discussion and critical evaluation of the manuscript. This work was supported by grants from the National Institutes of Health (GM073120, B.P.C.), from the Department of Defense Breast Cancer Initiative (17-96-1-6095, T.F.L.), and the UCLA Gyn Oncology Program (T.F.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian P. Chadwick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chadwick, B.P., Lane, T.F. BRCA1 associates with the inactive X chromosome in late S-phase, coupled with transient H2AX phosphorylation. Chromosoma 114, 432–439 (2005). https://doi.org/10.1007/s00412-005-0029-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-005-0029-1

Keywords

Navigation