Skip to main content
Log in

Differences in centromere positioning of cycling and postmitotic human cell types

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Centromere positioning in human cell nuclei was traced in non-cycling peripheral blood lymphocytes (G0) and in terminally differentiated monocytes, as well as in cycling phytohemagglutinin-stimulated lymphocytes, diploid lymphoblastoid cells, normal fibroblasts, and neuroblastoma SH-EP cells using immunostaining of kinetochores, confocal microscopy and three-dimensional image analysis. Cell cycle stages were identified for each individual cell by a combination of replication labeling with 5-bromo-2′-deoxyuridine and immunostaining of pKi67. We demonstrate that the behavior of centromeres is similar in all cell types studied: a large fraction of centromeres are in the nuclear interior during early G1; in late G1 and early S phase, centromeres shift to the nuclear periphery and fuse in clusters. Peripheral location and clustering of centromeres are most pronounced in non-cycling cells (G0) and terminally differentiated monocytes. In late S and G2, centromeres partially decluster and migrate towards the nuclear interior. In the rather flat nuclei of adherently growing fibroblasts and neuroblastoma cells, kinetochores showed asymmetrical distributions with preferential kinetochore location close either to the bottom side of the nucleus (adjacent to the growth surface) or to the nuclear upper side. This asymmetrical distribution of centromeres is considered to be a consequence of chromosome arrangement in anaphase rosettes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a, b
Fig. 2a–f
Fig. 3
Fig. 4a–g
Fig. 5
Fig. 6a–c
Fig. 7a–r
Fig. 8a–i
Fig. 9

Similar content being viewed by others

References

  • Abney JR, Cutler B, Fillbach ML, Axelrod D, Scalettar BA (1997) Chromatin dynamics in interphase nuclei and its implications for nuclear structure. J Cell Biol 137:1459–1468

    CAS  PubMed  Google Scholar 

  • Abranches R, Beven AF, Aragon-Alcaide L, Shaw PJ (1998) Transcription sites are not correlated with chromosome territories in wheat nuclei. J Cell Biol 143:5–12

    CAS  PubMed  Google Scholar 

  • Alcobia I, Dilao R, Parreira L (2000) Spatial associations of centromeres in the nuclei of hematopoietic cells: evidence for cell-type-specific organizational patterns. Blood 95:1608–1615

    CAS  PubMed  Google Scholar 

  • Bartholdi MF (1991) Nuclear distribution of centromeres during the cell cycle of human diploid fibroblasts. J Cell Sci 99:255–263

    PubMed  Google Scholar 

  • Baxter J, Merkenschlager M, Fisher AG (2002) Nuclear organisation and gene expression. Curr Opin Cell Biol 14:372–376

    Article  CAS  PubMed  Google Scholar 

  • Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    Article  CAS  PubMed  Google Scholar 

  • Bornfleth H, Edelmann P, Zink D, Cremer T, Cremer C (1999) Quantitative motion analysis of subchromosomal foci in living cells using four-dimensional microscopy. Biophys J 77:2871–2886

    CAS  PubMed  Google Scholar 

  • Bridger JM, Lichter P (1999) Analysis of mammalian interphase chromosomes by FISH and immunofluorescence. In: Bickmore WA (ed) Chromosome structural analysis. Oxford University, Oxford, pp 103–123

  • Bridger JM, Kill IR, Lichter P (1998) Association of pKi-67 with satellite DNA of the human genome in early G1 cells. Chromosome Res 6:13–24

    CAS  PubMed  Google Scholar 

  • Brown KE, Guest SS, Smale ST, Hahm K, Merkenschlager M, Fisher AG (1997) Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell 91:845–854

    CAS  PubMed  Google Scholar 

  • Brown KE, Baxter J, Graf D, Merkenschlager M, Fisher AG (1999) Dynamic repositioning of genes in the nucleus of lymphocytes preparing for cell division. Mol Cell 3:207–217

    CAS  PubMed  Google Scholar 

  • Choo AKH (1997) The centromere. Oxford University Press, Oxford

  • Cremer M, von Hase J, Volm T, Brero A, Kreth G, Walter J, Fischer C, Solovei I, Cremer C, Cremer T (2001) Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells. Chromosome Res 9:541–567

    CAS  PubMed  Google Scholar 

  • Csink AK, Henikoff S (1998) Large-scale chromosomal movements during interphase progression in Drosophila. J Cell Biol 143:13–22

    Google Scholar 

  • van Driel R, Manders EMM, de Jong L, Stap J, Aten JA (1998) Mapping of DNA replication sites in situ by fluorescence microscopy. Methods Cell Biol, pp 455–469

  • Dundr M, Misteli T (2001) Functional architecture in the cell nucleus. Biochem J 356:297–310

    Article  CAS  PubMed  Google Scholar 

  • Ferguson M, Ward DC (1992) Cell cycle dependent chromosomal movement in pre-mitotic human T-lymphocyte nuclei. Chromosoma 101:557–565

    CAS  PubMed  Google Scholar 

  • Gasser SM (2002) Visualizing chromatin dynamics in interphase nuclei. Science 296:1412–1416

    CAS  PubMed  Google Scholar 

  • Gerlich D, Beaudouin J, Kalbfuss B, Daigle N, Eils R, Ellenberg J (2003) Global chromosome positions are transmitted through mitosis in mammalian cells. Cell 112:751–764

    Article  CAS  PubMed  Google Scholar 

  • Haaf T, Schmid M (1991) Chromosome topology in mammalian interphase nuclei. Exp Cell Res 192:325–332

    CAS  PubMed  Google Scholar 

  • Habermann FA, Cremer M, Walter J, Kreth G, von Hase J, Bauer K, Wienberg J, Cremer C, Cremer T, Solovei I (2001) Arrangements of macro- and microchromosomes in chicken cells. Chromosome Res 9:569–584

    Article  CAS  PubMed  Google Scholar 

  • Hulspas R, Houtsmuller AB, Krijtenburg PJ, Bauman JG, Nanninga N (1994) The nuclear position of pericentromeric DNA of chromosome 11 appears to be random in G0 and non-random in G1 human lymphocytes. Chromosoma 103:286–292

    Article  CAS  PubMed  Google Scholar 

  • Ikegami S, Taguchi T, Ohashi M, Oguro M, Nagano H, Mano Y (1978) Aphidicolin prevents mitotic cell division by interfering with the activity of DNA polymerase-alpha. Nature 275:458–460

    CAS  PubMed  Google Scholar 

  • Kill IR (1996) Localisation of the Ki-67 antigen within the nucleolus. Evidence for a fibrillarin-deficient region of the dense fibrillar component. J Cell Sci 109:1253–1263

    CAS  PubMed  Google Scholar 

  • Lachner M, Jenuwein T (2002) The many faces of histone lysine methylation. Curr Opin Cell Biol 14:286–298

    Article  CAS  PubMed  Google Scholar 

  • Lachner M, O’Sullivan RJ, Jenuwein T (2003) An epigenetic road map for histone lysine methylation. J Cell Sci 116:2117–2124

    Google Scholar 

  • Leonhardt H, Rahn HP, Weinzierl P, Sporbert A, Cremer T, Zink D, Cardoso MC (2000) Dynamics of DNA replication factories in living cells. J Cell Biol 149:271–280

    CAS  PubMed  Google Scholar 

  • Mahy NL, Perry PE, Bickmore WA (2002) Gene density and transcription influence the localization of chromatin outside of chromosome territories detectable by FISH. J Cell Biol 159:753–763

    Google Scholar 

  • Maison C, Almouzni G (2004) HP1 and the dynamics of heterochromatin maintenance. Nat Rev Mol Cell Biol 5:296–305

    Article  CAS  PubMed  Google Scholar 

  • Manders EM, Kimura H, Cook PR (1999) Direct imaging of DNA in living cells reveals the dynamics of chromosome formation. J Cell Biol 144:813–821

    CAS  PubMed  Google Scholar 

  • Manuelidis L (1984) Different central nervous system cell types display distinct and nonrandom arrangements of satellite DNA sequences. Proc Natl Acad Sci USA 81:3123–3127

    CAS  PubMed  Google Scholar 

  • Manuelidis L (1985) Indications of centromere movement during interphase and differentiation. Ann N Y Acad Sci 450:205–221

    CAS  PubMed  Google Scholar 

  • Marshall WF (2002) Order and disorder in the nucleus. Curr Biol 12:R185–R192

    CAS  PubMed  Google Scholar 

  • Martou G, De Boni U (2000) Nuclear topology of murine, cerebellar Purkinje neurons: changes as a function of development. Exp Cell Res 256:131–139

    Article  CAS  PubMed  Google Scholar 

  • O’Keefe RT, Henderson SC, Spector DL (1992) Dynamic organization of DNA replication in mammalian cell nuclei: spatially and temporally defined replication of chromosome-specific alpha-satellite DNA sequences. J Cell Biol 116:1095–1110

    CAS  PubMed  Google Scholar 

  • Parada L, Misteli T (2002) Chromosome positioning in the interphase nucleus. Trends Cell Biol 12:425–432

    Article  Google Scholar 

  • Rabl C (1885) Über Zelltheilung. In: Gegenbaur C (ed) Morphologisches Jahrbuch, pp 214–330

  • Richards EJ, Elgin SC (2002) Epigenetic codes for heterochromatin formation and silencing: rounding up the usual suspects. Cell 108:489–500

    CAS  PubMed  Google Scholar 

  • Solovei I, Walter J, Cremer M, Habermann H, Schermelleh L, Cremer T (2002a) FISH on three-dimensionally preserved nuclei. In: Beatty B, Mai S, Squire J (eds) FISH. Oxford University, Oxford, pp 119–157

  • Solovei I, Cavallo A, Schermelleh L, Jaunin F, Scasselati C, Cmarko D, Cremer C, Fakan S, Cremer T (2002b) Spatial preservation of nuclear chromatin architecture during three-dimensional fluorescence in situ hybridization (3D-FISH). Exp Cell Res 276:10–23

    Article  CAS  PubMed  Google Scholar 

  • Solovei I, Grandi N, Knoth R, Volk B, Cremer T (2004a) Postnatal changes of pericentromeric heterochromatin and nucleoli in postmitotic Purkinje cells during murine cerebellum development. Cytogenet Genome Res 105 (in press)

  • Solovei I, Schermelleh L, Albiez H, Cremer T (2004b) Detection of the cell cycle stages in situ in growing cell populations. In: Celius J (ed) Cell biology: a laboratory handbook, 3rd edn. Elsevier, San Diego (in press)

  • Starborg M, Gell K, Brundell E, Hoog C (1996) The murine Ki-67 cell proliferation antigen accumulates in the nucleolar and heterochromatic regions of interphase cells and at the periphery of the mitotic chromosomes in a process essential for cell cycle progression. J Cell Sci 109:143–153

    CAS  PubMed  Google Scholar 

  • Tashiro S, Walter J, Shinohara A, Kamada N, Cremer T (2000) Rad51 accumulation at sites of DNA damage and in postreplicative chromatin. J Cell Biol 150:283–291

    Google Scholar 

  • Volpi EV, Chevret E, Jones T, Vatcheva R, Williamson J, Beck S, Campbell RD, Goldsworthy M, Powis SH, Ragoussis J, Trowsdale J, Sheer D (2000) Large-scale chromatin organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. J Cell Sci 113:1565–1576

    CAS  PubMed  Google Scholar 

  • Vourc’h C, Taruscio D, Boyle AL, Ward DC (1993) Cell cycle-dependent distribution of telomeres, centromeres, and chromosome-specific subsatellite domains in the interphase nucleus of mouse lymphocytes. Exp Cell Res 205:142–151

    Article  CAS  PubMed  Google Scholar 

  • Walter J, Schermelleh L, Cremer M, Tashiro S, Cremer T (2003) Chromosome order in HeLa cells changes during mitosis and early G1, but is stably maintained during subsequent interphase stages. J Cell Biol 160:685–697

    Google Scholar 

  • Weierich C, Brero A, Stein S, von Hase J, Cremer C, Cremer T, Solovei I (2003) Three-dimensional arrangements of centromeres and telomeres in nuclei of human and murine lymphocytes. Chromosome Res 11:485–502

    Article  CAS  PubMed  Google Scholar 

  • Weimer R, Haaf T, Kruger J, Poot M, Schmid M (1992) Characterization of centromere arrangements and test for random distribution in G0, G1, S, G2, G1, and early S′ phase in human lymphocytes. Hum Genet 88:673–682

    CAS  PubMed  Google Scholar 

  • Williams RR, Broad S, Sheer D, Ragoussis J (2002) Subchromosomal positioning of the epidermal differentiation complex (EDC) in keratinocyte and lymphoblast interphase nuclei. Exp Cell Res 272:163–175

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to W.C. Earnshaw (University of Edinburgh) for the generous gift of anti-CENP-B and anti-CENP-C antibodies. B. Joffe (Technical University of Munich) has suggested and greatly helped with the analysis of the asymmetrical distribution of peripheral kinetochores in individual cells. This work was supported by grants from the Deutsche Forschungsgemeinschaft to T. Cremer (Cr 59/20, 1–3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Solovei.

Additional information

Communicated by E.A. Nigg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solovei, I., Schermelleh, L., Düring, K. et al. Differences in centromere positioning of cycling and postmitotic human cell types. Chromosoma 112, 410–423 (2004). https://doi.org/10.1007/s00412-004-0287-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-004-0287-3

Keywords

Navigation