Skip to main content
Log in

Genetic and cytological characterization of the recombination protein RAD-51 in Caenorhabditis elegans

  • Original Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

We investigated the role of Caenorhabditis elegans rad-51 during meiotic prophase. We showed that rad-51 mutant worms are viable, have no defects in meiotic homology recognition and synapsis but exhibit abnormal chromosomal morphology and univalent formation at diakinesis. During meiosis RAD-51 becomes localized to distinct foci in nuclei of the transition zone of the gonad and is most abundant in nuclei at late zygotene/early pachytene. Foci then gradually disappear from chromosomes and no foci are observed in late pachytene. RAD-51 localization requires the recombination genes spo-11 and mre-11 as well as chk-2, which is necessary for homology recognition and presynaptic alignment. Mutational analysis with synapsis- and recombination-defective strains, as well as the analysis of strains bearing heterozygous translocation chromosomes, suggests that presynaptic alignment may be required for RAD-51 focus formation, whereas homologous synaptonemal complex formation is required to remove RAD-51 foci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1. A
Fig. 2.
Fig. 3A–I.
Fig. 4A–G.
Fig. 5A, B.

Similar content being viewed by others

References

  • Agarwal S, Roeder GS (2000) Zip3 provides a link between recombination enzymes and synaptonemal complex proteins. Cell 102:245–255

    CAS  PubMed  Google Scholar 

  • Albini SM, Jones GH (1987) Synaptonemal complex spreading in Allium cepa and A. fistulosum. I. The initiation and sequence of pairing. Chromosoma 95:324–338

    Google Scholar 

  • Allers T, Lichten M (2001) Differential timing and control of noncrossover and crossover recombination during meiosis. Cell 106:47–57

    CAS  PubMed  Google Scholar 

  • Anderson LK, Offenberg HH, Verkuijlen WMHC, Heyting C (1997) RecA-like proteins are components of early meiotic nodules in lily. Proc Natl Acad Sci U S A 94:6868-6873

  • Ashley T, Plug AW, Xu J, Solari AJ, Reddy G, Golub EI, Ward DC (1995) Dynamic changes in Rad51 distribution on chromatin during meiosis in male and female vertebrates. Chromosoma 104:19–28

    Article  PubMed  Google Scholar 

  • Barlow AL, Benson FE, West SC, Hultén MA (1997a) Distribution of the Rad51 recombinase in human and mouse spermatocytes. EMBO J 16:5207–5215

    CAS  PubMed  Google Scholar 

  • Barlow C, Liyanage M, Moens PB, Deng CX, Ried T, Wynshaw-Boris A (1997b) Partial rescue of the prophase I defects of Atm-deficient mice by p53 and p21 null alleles. Nat Genet 17:462–466

    CAS  PubMed  Google Scholar 

  • Bergerat A, de Massy B, Gadelle D, Varoutas P-C, Nicolas A, Forterre P (1997) An atypical topoisomerase II from archaea with implications for meiotic recombination. Nature 386:414–417

    CAS  PubMed  Google Scholar 

  • Bishop DK (1994) RecA homologs Dmc1 and Rad51 interact to form multiple nuclear complexes prior to meiotic chromosome synapsis. Cell 79:1081–1092

    CAS  PubMed  Google Scholar 

  • Boulton SJ, Gartner A, Reboul J, Vaglio P, Dyson N, Hill DE, Vidal M (2002) Combined functional genomic maps of the C. elegans DNA damage response. Science 295:127–131

    CAS  PubMed  Google Scholar 

  • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    CAS  PubMed  Google Scholar 

  • Cervantes MD, Farah JA, Smith GR (2000) Meiotic DNA breaks associated with recombination in S. pombe. Mol Cell 5:883–888

    Article  CAS  PubMed  Google Scholar 

  • Chin GM, Villeneuve AM (2001) C. elegans mre-11 is required for meiotic recombination and DNA repair but is dispensable for the meiotic G2 DNA damage checkpoint. Genes Dev 15:522–534

    CAS  PubMed  Google Scholar 

  • Chua PR, Roeder GS (1998) Zip2, a meiosis-specific protein required for the initiation of chromosome synapsis. Cell 93:349–359

    CAS  PubMed  Google Scholar 

  • Conger AD, Fairchild LM (1953) A quick-freeze method for making smear slides permanent. Stain Tech 28:281–283

    Google Scholar 

  • de Massy B, Baudat F, Nicolas A (1994) Initiation of recombination in Saccharomyces cerevisiae haploid meiosis. Proc Natl Acad Sci U S A 91:11929-11933

  • Dernburg AF, McDonald K, Moulder G, Barstead R, Dresser M, Villeneuve AM (1998) Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell 94:387–398

    CAS  PubMed  Google Scholar 

  • Dernburg AF, Zalevsky J, Colaiacovo MP, Villeneuve AM (2000) Transgene-mediated cosuppression in the C. elegans germ line. Genes Dev 14:1578–1583

    CAS  PubMed  Google Scholar 

  • Derry WB, Putzke AP, Rothman JH (2001) Caenorhabditis elegans p53: role in apoptosis, meiosis, and stress resistance. Science 294:591–595

    CAS  PubMed  Google Scholar 

  • Edgley ML, Baillie DL, Riddle DL, et al (1995) Genetic balancers. In: Epstein HF, Shakes DC (eds) Caenorhabditis elegans. Modern biological analysis of an organism. Academic Press, San Diego, pp 147–184

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    CAS  PubMed  Google Scholar 

  • Franklin AE, McElver J, Sunjevaric I, Rothstein R, Bowen B, Cande WZ (1999) Three-dimensional microscopy of the Rad51 recombination protein during meiotic prophase. Plant Cell 11:809–824

    Google Scholar 

  • Gartner A, Hengartner MO (1998) Genetic approaches to programmed cell death in C. elegans. In: Lockshin RA, Zakeri Z, Tilly JL (eds) When cells die: a comprehensive evaluation of apoptosis and programmed cell death. Wiley-Liss, New York, pp 131–146

    Google Scholar 

  • Gartner A, Milstein S, Ahmed S, Hodgkin J, Hengartner MO (2000) A conserved checkpoint pathway mediates DNA damage-induced apoptosis and cell cycle arrest in C. elegans. Mol Cell 5:435–443

    CAS  PubMed  Google Scholar 

  • Gilbertson LA, Stahl FW (1994) Initiation of meiotic recombination is independent of interhomologue interactions. Proc Natl Acad Sci U S A 91:11934–11937

  • Goldstein P (1986) The synaptonemal complexes of Caenorhabditis elegans: the dominant him mutant mnT6 and pachytene karyotype analysis of the X-autosome translocation. Chromosoma 93:256–260

    PubMed  Google Scholar 

  • Grelon M, Vezon D, Gendrot G, Pelletier G (2001) AtSPO11-1 is necessary for efficient meiotic recombination in plants. EMBO J 20:589–600

    CAS  PubMed  Google Scholar 

  • Gumienny TL, Lambie E, Hartwieg E, Horvitz HR, Hengartner MO (1999) Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline. Development 126:1011–1022

    CAS  PubMed  Google Scholar 

  • Hirao A, Kong YY, Matsuoka S, Wakeham A, Ruland J, Yoshida H, Liu D, Elledge SJ, Mak TW (2000) DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287:1824–1827

    Article  CAS  PubMed  Google Scholar 

  • Hunter N, Kleckner N (2001) The single-end invasion; an asymmetric intermediate at the double-strand break to double-Holliday junction transition of meiotic recombination. Cell 106:59–70

    CAS  PubMed  Google Scholar 

  • Jacobson GK, Pinon R, Esposito RE, Esposito MS (1975) Single-strand scissions of chromosomal DNA during commitment to recombination at meiosis. Proc Natl Acad Sci U S A 72:1887–1891

  • Keeney S, Giroux CN, Kleckner N (1997) Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88:375–384

    CAS  PubMed  Google Scholar 

  • Keeney S, Baudat F, Angeles M, Zhou ZH, Copeland NG, Jenkins NA, Manova K, Jasin M (1999) A mouse homolog of the Saccharomyces cerevisiae meiotic recombination DNA transesterase Spo11p. Genomics 61:170–182

    Article  CAS  PubMed  Google Scholar 

  • Kelly KO, Dernburg AF, Stanfield GM, Villeneuve AM (2000) Caenorhabditis elegans msh-5 is required for both normal and radiation-induced meiotic crossing over but not for completion of meiosis. Genetics 156:617–630

    CAS  PubMed  Google Scholar 

  • Lim DS, Hasty P (1996) A mutation in mouse rad51 results in an early embryonic lethal that is suppressed by a mutation in p53. Mol Cell Biol 16:7133–7143

    CAS  PubMed  Google Scholar 

  • Loidl J (1990) The initiation of meiotic chromosome pairing: the cytological view. Genome 33:759–778

    CAS  PubMed  Google Scholar 

  • Loidl J, Pasierbek P, Rose AM (2003) Conservation and variability of meiotic processes — lessons from the unconventional meiosis of C. elegans. Chromosomes Today 14: in press

    Google Scholar 

  • Luo G, Yao MS, Bender CF, Mills M, Bladl AR, Bradley A, Petrini JH (1999) Disruption of mRAD50 causes embryonic stem cell lethality, abnormal embryonic development, and sensitivity to ionizing radiation. Proc Natl Acad Sci U S A 96:7376-7381

  • MacQueen AJ, Villeneuve AM (2001) Nuclear reorganization and homologous chromosome pairing during meiotic prophase require C. elegans chk-2. Genes Dev 15:1674–1687

    Article  CAS  PubMed  Google Scholar 

  • MacQueen AJ, Colaiácovo MP, McDonald K, Villeneuve AM (2002) Synapsis-dependent and -independent mechanisms stabilize homolog pairing during meiotic prophase in C. elegans. Genes Dev 16:2428–2442

    CAS  Google Scholar 

  • Mahadevaiah SK, Turner JMA, Baudat F, Rogakou EP, De Boer P, Blanco-Rodríguez J, Jasin M, Keeney S, Bonner WM, Burgoyne PS (2001) Recombinational DNA double-strand breaks in mice precede synapsis. Nat Genet 27:271–276

    Google Scholar 

  • Masson J-Y, West SC (2001) The Rad51 and Dmc1 recombinases: a non-identical twin relationship. Trends Biochem Sci 26:131–136

    CAS  PubMed  Google Scholar 

  • Moens PB, Chen DJ, Shen ZY, Kolas N, Tarsounas M, Heng HHQ, Spyropoulos B (1997) Rad51 immunocytology in rat and mouse spermatocytes and oocytes. Chromosoma 106:207–215

    Article  CAS  PubMed  Google Scholar 

  • Ogawa T, Yu X, Shinohara A, Egelman EH (1993) Similarity of the yeast RAD51 filament to the bacterial RecA filament. Science 259:1896–1899

    CAS  PubMed  Google Scholar 

  • Paques F, Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63:349–404

    CAS  PubMed  Google Scholar 

  • Pasierbek P, Jantsch M, Melcher M, Schleiffer A, Schweizer D, Loidl J (2001) A Caenorhabditis elegans cohesion protein with functions in meiotic chromosome pairing and disjunction. Genes Dev 15:1349–1360

    Article  CAS  PubMed  Google Scholar 

  • Plug AW, Xu JH, Reddy G, Golub EI, Ashley T (1996) Presynaptic association of Rad51 protein with selected sites in meiotic chromatin. Proc Natl Acad Sci U S A 93:5920–5924

  • Rinaldo C, Ederle S, Rocco V, La Volpe A (1998) The Caenorhabditis elegans RAD51 homolog is transcribed into two alternative mRNAs potentially encoding proteins of different sizes. Mol Gen Genet 260:289–294

    PubMed  Google Scholar 

  • Rinaldo C, Bazzicalupo P, Hilliard M, La Volpe A (2002) Roles for Caenorhabditis elegans rad-51 in meiosis and in resistance to ionizing radiation during development. Genetics 160:471–479

    CAS  PubMed  Google Scholar 

  • Roeder GS (1997) Meiotic chromosomes: it takes two to tango. Genes Dev 11:2600–2621

    CAS  PubMed  Google Scholar 

  • Romanienko PJ, Camerini-Otero RD (2000) The mouse Spo11 gene is required for meiotic chromosome synapsis. Mol Cell 6:975–987

    CAS  Google Scholar 

  • Schumacher B, Hofmann K, Boulton S, Gartner A (2001) The C. elegans homolog of the p53 tumor suppressor is required for DNA damage-induced apoptosis. Curr Biol 11:1722–1727

    Article  CAS  PubMed  Google Scholar 

  • Shinohara A, Ogawa H, Ogawa T (1992) RAD51 protein involved in repair and recombination in Saccharomyces cerevisiae is a RECA-like protein. Cell 69:457–470

    CAS  PubMed  Google Scholar 

  • Stack SM, Sherman JD, Anderson LK, Herickhoff LS (1993) Meiotic nodules in vascular plants. Chromosomes Today 11:301–311

    CAS  Google Scholar 

  • Story RM, Bishop DK, Kleckner N, Steitz TA (1993) Structural relationship of bacterial RecA proteins to recombination proteins from bacteriophage T4 and yeast. Science 259:1892–1896

    CAS  PubMed  Google Scholar 

  • Takanami T, Sato S, Ishihara T, Katsura I, Takahashi H, Higashitani A (1998) Characterization of a Caenorhabditis elegans recA-like gene Ce-rdh-1 involved in meiotic recombination. DNA Res 5:373–377

    CAS  PubMed  Google Scholar 

  • Tarsounas M, Morita T, Pearlman RE, Moens PB (1999) RAD51 and DMC1 form mixed complexes associated with mouse meiotic chromosome cores and synaptonemal complexes. J Cell Biol 147:207–219

    CAS  PubMed  Google Scholar 

  • Terasawa M, Shinohara A, Hotta Y, Ogawa H, Ogawa T (1995) Localization of RecA-like recombination proteins on chromosomes of the lily at various meiotic stages. Genes Dev 9:925–934

    CAS  PubMed  Google Scholar 

  • Tsuzuki T, Fujii Y, Sakumi K, Tominaga Y, Nakao K, Sekiguchi M, Matsushiro A, Yoshimura Y, Morita T (1996) Targeted disruption of the Rad51 gene leads to lethality in embryonic mice. Proc Natl Acad Sci U S A 93:6236–6240

  • Xiao Y, Weaver DT (1997) Conditional gene targeted deletion by Cre recombinase demonstrates the requirement for the double-strand break repair Mre11 protein in the murine embryonic stem cells. Nucleic Acids Res 25:2985–2991

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Iwai Y, Sonoda E, Sasaki MS, Morrison C, Haraguchi T, Hiraoka Y, Yamashita YM, Yagi T, Takata M, Price C, Kakazu N, Takeda S (1999) Mre11 is essential for the maintenance of chromosomal DNA in vertebrate cells. EMBO J 18:6619–6629

    Article  CAS  PubMed  Google Scholar 

  • Zetka MC, Kawasaki I, Strome S, Muller F (1999) Synapsis and chiasma formation in Caenorhabditis elegans require HIM-3, a meiotic chromosome core component that functions in chromosome segregation. Genes Dev 13:2258–2270

    Article  CAS  PubMed  Google Scholar 

  • Zickler D, Kleckner N (1999) Meiotic chromosomes: integrating structure and function. Annu Rev Genet 33:603–754

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Elegene, in particular to Anke Fenn for the generation of the rad-51 deletion, and to Björn Schumacher for generating backcrossed rad51 strains. We thank Anne Villeneuve for the spo-11, mre-11 and msh-5 strains. Anton Gartner acknowledges generous support from the Max Planck Society (Erich Nigg). This work was supported by grants DFG 701-1/1 and 701-2/1 from the Deutsche Forschungsgemeinschaft and by grants P14642 and S8211 from the Austrian Science Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Loidl.

Additional information

Edited by: D. Schweizer

Arno Alpi and Pawel Pasierbek contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alpi, A., Pasierbek, P., Gartner, A. et al. Genetic and cytological characterization of the recombination protein RAD-51 in Caenorhabditis elegans . Chromosoma 112, 6–16 (2003). https://doi.org/10.1007/s00412-003-0237-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-003-0237-5

Keywords

Navigation