Skip to main content

Advertisement

Log in

Mammalian meiosis involves DNA double-strand breaks with 3′ overhangs

  • Original Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Meiotic recombination in yeast is initiated at DNA double-strand breaks (DSBs), processed into 3′ single-strand overhangs that are active in homology search, repair and formation of recombinant molecules. Are 3′ overhangs recombination intermediaries in mouse germ cells too? To answer this question we developed a novel approach based on the properties of the Klenow enzyme. We carried out two different, successive in situ Klenow enzyme-based reactions on sectioned preparations of testicular tubules. Signals showing 3′ overhangs were observed during wild-type mouse spermatogenesis, but not in Spo11 −/− males, which lack meiotic DSBs. In Atm −/− mice, abundant positively stained spermatocytes were present, indicating an accumulation of non-repaired DSBs, suggesting the involvement of ATM in repair of meiotic DSBs. Thus the processing of DSBs into 3′ overhangs is common to meiotic cells in mammals and yeast, and probably in all eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3a–i.

Similar content being viewed by others

References

  • Barlow C, Hirotsune S, Paylor R, Liyanage M, Eckhaus M, Collins F et al (1996) Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86:159–171

    CAS  PubMed  Google Scholar 

  • Barlow C, Liyanage M, Moens P, Deng C, Ried T, Wynshaw-Boris A (1997) Partial rescue of the prophase I defects of Atm-deficient mice by p53 and p21 null alleles. Nat Genet 17:462–466

    CAS  PubMed  Google Scholar 

  • Barlow C, Liyanage M, Moens P, Tarsounas M, Nagashima K, Brown K et al (1998) Atm deficiency results in severe meiotic disruption as early as leptonema of prophase I. Development 125:4007–4017

    CAS  PubMed  Google Scholar 

  • Baudat F, Manova K, Yuen J, Jasin M, Keeney S (2000) Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking spo11. Mol Cell 6:989–998

    CAS  PubMed  Google Scholar 

  • Bergerat A, de Massy B, Gadelle D, Varoutas PC, Nicolas A, Forterre P (1997) An atypical topoisomerase II from archaea with implication for meiotic recombination. Nature 386:414–417

    CAS  PubMed  Google Scholar 

  • Bishop DK, Park D, Xu L, Kleckner N (1992) DMC1: a meiosis-specific yeast homolog of E.coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69:439–456

    CAS  PubMed  Google Scholar 

  • Brown K, Barlow C, Wynshaw-Boris A (1999) Multiple ATM-dependent pathways: an explanation for pleiotropy. Am J Hum Genet 64:46–50

    Article  CAS  PubMed  Google Scholar 

  • Cao L, Alani E, Kleckner N (1990) A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae. Cell 61:1089–1101

    CAS  PubMed  Google Scholar 

  • Cervantes M, Farah J, Smith G (2000) Meiotic DNA breaks associated with recombination in S. pombe. Mol Cell 5:883–888

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Yuan S, Liu W, Xu Y, Trujillo K, Song B et al (1999) Radiation-induced assembly of Rad51 and Rad52 recombination complex requires ATM and c-Abl. J Biol Chem 274:12748–12752

    Article  CAS  PubMed  Google Scholar 

  • Clark R, Chen M, Kochanek P, Watkins S, Jin K, Draviam R et al (2001) Detection of single- and double-strand DNA breaks after traumatic brain injury in rats: comparison of in situ labeling techniques using DNA polymerase I, the Klenow fragment of DNA polymerase I, and terminal deoxynucleotidyl transferase. J Neurotrauma 18:675–689

    Article  CAS  PubMed  Google Scholar 

  • de Massy B, Rocco V, Nicolas A (1995) The nucleotide mapping of DNA double-strand breaks at the CYS3 initiation site of meiotic recombination in Saccharomyces cerevisiae. EMBO J 14:4589–4598

    PubMed  Google Scholar 

  • de Vries S, Baart E, Dekker M, Siezen A, de Rooij D, de Boer P et al (1999) Mouse MutS-like protein Msh5 is required for proper chromosome synapsis in male and female meiosis. Genes Dev 13:523–531

    PubMed  Google Scholar 

  • Gavrieli Y, Sherman Y, Ben-Sasson S (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501

    CAS  PubMed  Google Scholar 

  • Gu Y, Jow G, Moulton B, Lee C, Sensibar J, Park-Sarge O et al (1994) Apoptosis in decidual tissue regression and reorganization. Endocrinology 135:1272–1279

    CAS  PubMed  Google Scholar 

  • Hawley R, Friend S (1996) Strange bedfellows in even stranger places: the role of ATM in meiotic cells, lymphocytes, tumors, and its functional links to p53. Genes Dev 10:2383–2388

    CAS  PubMed  Google Scholar 

  • Kassir Y, Simchen G (1991) Monitoring meiosis and sporulation in Saccharomyces cerevisiae. Methods Enzymol 194:94–110

    CAS  PubMed  Google Scholar 

  • Keeney S (2001) The mechanism and control of meiotic recombination initiation. Curr Top Dev Biol 52:1–53

    CAS  PubMed  Google Scholar 

  • Kneitz B, Cohen P, Avdievich E, Zhu L, Kane M, Hou HJ et al (2000) MutS homolog 4 localization to meiotic chromosomes is required for chromosome pairing during meiosis in male and female mice. Genes Dev 14:1085–1097

    CAS  PubMed  Google Scholar 

  • Kornberg A, Baker TA (1991) DNA replication, 2nd edn. WH Freeman, NY

  • Liu J, Wu T, Lichten M (1995) The location and structure of double-strand DNA breaks induced during yeast meiosis: evidence for a covalently linked DNA-protein intermediate. EMBO J 14:4599–4608

    CAS  PubMed  Google Scholar 

  • Lydall D, Nikolsky Y, Bishop D, Weinert T (1996) A meiotic recombination checkpoint controlled by mitotic checkpoint genes. Nature 383:840–843

    Google Scholar 

  • Mahadevaiah S, Turner J, Baudat F, Rogakou E, de Boer P, Blanco-Rodriguez J et al (2001) Recombinational DNA double-strand breaks in mice precede synapsis. Nat Genet 27:271–276

    Article  CAS  PubMed  Google Scholar 

  • Morrison C, Sonoda E, Takao N, Shinohara A, Yamamoto K, Takeda S (2000) The controlling role of ATM in homologous recombinational repair of DNA damage. EMBO J 19:463–471

    Article  CAS  PubMed  Google Scholar 

  • Odorisio T, Rodriguez T, Evans E, Clarke A, Burgoyne P (1998) The meiotic checkpoint monitoring synapsis eliminates spermatocytes via p53-independent apoptosis. Nat Genet 18:257–261

    CAS  PubMed  Google Scholar 

  • Paques F, Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63:349–404

    CAS  PubMed  Google Scholar 

  • Pittman D, Cobb J, Schimenti K, Wilson L, Cooper D, Brignull E et al (1998) Meiotic prophase arrest with failure of chromosome synapsis in mice deficient for Dmc1, a germline-specific RecA homolog. Mol Cell 1:697–705

    CAS  PubMed  Google Scholar 

  • Roeder G, Bailis J (2000) The pachytene checkpoint. Trends Genet 16:395–403

    CAS  PubMed  Google Scholar 

  • Rogakou E, Boon C, Redon C, Bonner W (1999) Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol 46:905–916

    Article  Google Scholar 

  • Romanienko P, Camerini-Otero R (2000) The mouse spo11 gene is required for meiotic chromosome synapsis. Mol Cell 6:975–987

    CAS  Google Scholar 

  • Rotman G, Shiloh Y (1999) ATM: a mediator of multiple responses to genotoxic stress. Oncogene 18:6135–6144

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Sanchez Y, Desany B, Jones W, Liu Q, Wang B, Elledge S (1996) Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways. Science 271:357–360

    CAS  PubMed  Google Scholar 

  • Shinohara A, Ogawa H, Ogawa T (1992) Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69:457–470

    CAS  PubMed  Google Scholar 

  • Smith KN, Nicolas A (1998) Recombination at work for meiosis. Curr Opin Genet Dev 8:200–211

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Treco D, Schultes NP, Szostak JW (1989) Double-strand breaks at an initiation site for meiotic gene conversion. Nature 338:87–90

    Google Scholar 

  • Sun H, Treco D, Szostak JW (1991) Extensive 3′-overhanging, single-stranded DNA associated with the meiosis-specific double-strand breaks at the ARG4 recombination initiation site. Cell 64:1155–1161

    CAS  PubMed  Google Scholar 

  • Tsuzuki T, Fujii Y, Sakumi K, Tominaga Y, Nakao K, Sekiguchi M et al (1996) Targeted disruption of the Rad51 gene leads to lethality in embryonic mice. Proc Natl Acad Sci U S A 93: 6236–6240

    Google Scholar 

  • Usui T, Ogawa H, Petrini J (2001) A DNA damage response pathway controlled by Tel1 and the Mre11 complex. Mol Cell 7:1255–1266

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Ashley T, Brainerd E, Bronson R, Meyn M, Baltimore D (1996) Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma. Genes Dev 10:2411–2422

    CAS  PubMed  Google Scholar 

  • Yoshida K, Kondoh G, Matsuda Y, Habu T, Nishimune Y, Morita T (1998) The mouse RecA-like gene Dmc1 is required for homologous chromosome synapsis during meiosis. Mol Cell 1:707–718

    CAS  PubMed  Google Scholar 

  • Zenvirth D, Simchen G (2000) Meiotic double-strand breaks in Schizosaccharomyces pombe. Curr Genet 38:33–38

    CAS  PubMed  Google Scholar 

  • Zenvirth D, Arbel T, Sherman A, Goldway M, Klein S, Simchen G (1992) Multiple sites for double-strand breaks in whole meiotic chromosomes of Saccharomyces cerevisiae. EMBO J 11:3441–3447

    CAS  PubMed  Google Scholar 

  • Zickler D, Kleckner N (1998) The leptotene-zygotene transition of meiosis. Annu Rev Genet 32:619–697

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Yossi Shiloh for useful discussions and helpful comments on the manuscript. This work was supported by grants from the USA/Israel Binational Science Foundation (BSF). A.B. was supported by a Lady Davis postdoctoral fellowship and F.B. by a fellowship from the Charles H. Revson Foundation and by grants to the laboratories of Maria Jasin and Scott Keeney.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giora Simchen.

Additional information

Edited by: P. Moens

The first three authors contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zenvirth, D., Richler, C., Bardhan, A. et al. Mammalian meiosis involves DNA double-strand breaks with 3′ overhangs. Chromosoma 111, 369–376 (2003). https://doi.org/10.1007/s00412-002-0223-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-002-0223-3

Keywords

Navigation