Skip to main content

Advertisement

Log in

Combined effects of radiotherapy and endostatin gene therapy in melanoma tumor model

  • Original Paper
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

PEgr–Endostatin–EGFP plasmid was constructed to investigate its expression properties induced by ionizing irradiation and the effect of pEgr–Endostatin–EGFP gene-radiotherapy on melanoma tumor-bearing mice. The pEgr–Endostatin–EGFP plasmid was transfected into B16 cell line with liposome. The expression property of endostatin was investigated by RT-PCR and that of EGFP was detected by flow cytometry. Tumor-bearing mice were treated by the plasmid injection and 2 Gy X-irradiation of three fractions. Tumor growth was observed for 18 days after treatment. Change of tumor capillary formation was measured with histochemistry assay at the end of the experiment. The expression of GFP in B16 melanoma cells was detected after X-irradiation with 0.05–20 Gy. Time-course studies showed that the expression of GFP in B16 cells reached its peak at 8 h after irradiation with 2 Gy. The injection of pEgr–Endostatin–EGFP recombinant plasmid into the implanted B16 melanoma in C57BL/6J mice followed by local X-irradiation could significantly inhibit tumor growth with inhibition of intratumor micro-vessel density. The inhibitory effect of pEgr–Endostatin–EGFP gene-radiotherapy on the growth of B16 melanoma is correlated with the marked decrease of intratumoral vascularization. The present data point to the potential of an anti-angiogenic approach in gene-radiotherapy of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Palmer DH, Young LS, Mautner V (2006) Cancer gene-therapy: clinical trials. Trends Biotechnol 24(2):76–82

    Article  Google Scholar 

  2. Irie A, Matsumoto K, Anderegg B, Kuruma H, Kashani-Sabet M, Scanlon KJ, Uchida T, Baba S (2006) Growth inhibition efficacy of an adenovirus expressing dual therapeutic genes, wild-type p53, and anti-erbB2 ribozyme, against human bladder cancer cells. Cancer Gene Ther 13(3):298–305

    Article  Google Scholar 

  3. Walther W, Wendt J, Stein U (1997) Employment of the mdr1 promoter for the chemotherapy-inducible expression of therapeutic genes in cancer gene therapy. Gene Ther 4(6):544–552

    Article  Google Scholar 

  4. Holt JT (1997) Breast cancer genes: therapeutic strategies. Ann N Y Acad Sci 833:34–41

    Article  Google Scholar 

  5. Gunzburg WH, Karle P, Mrochen S, Sparmann G, Saller R, Klein D, Uckert W, Salmons B (1998) Regulated gene expression after retroviral vector-mediated delivery of cancer-relevant therapeutic genes. Recent Results Cancer Res 144:116–126

    Google Scholar 

  6. Walther W, Stein U (1999) Therapeutic genes for cancer gene therapy. Mol Biotechnol 13(1):21–28

    Article  Google Scholar 

  7. Inoue S, Shanker M, Miyahara R, Gopalan B, Patel S, Oida Y, Branch CD, Munshi A, Meyn RE, Andreeff M, Tanaka F, Mhashilkar AM, Chada S, Ramesh R (2006) MDA-7/IL-24-based cancer gene therapy: translation from the laboratory to the clinic. Curr Gene Ther 6(1):73–91

    Article  Google Scholar 

  8. Young LS, Searle PF, Onion D, Mautner V (2006) Viral gene therapy strategies: from basic science to clinical application. J Pathol 208(2):299–318

    Article  Google Scholar 

  9. Fujita T, Teh BS, Timme TL, Mai WY, Satoh T, Kusaka N, Naruishi K, Fattah EA, Aguilar-Cordova E, Butler EB, Thompson TC (2006) Sustained long-term immune responses after in situ gene therapy combined with radiotherapy and hormonal therapy in prostate cancer patients. Int J Radiat Oncol Biol Phys 65(1):84–90

    Google Scholar 

  10. Teh BS, Aguilar-Cordova E, Vlachaki MT, Aguilar L, Mai WY, Caillouet J, Davis M, Miles B, Kadmon D, Ayala G, Lu HH, Chiu JK, Carpenter LS, Woo SY, Grant WH 3rd, Wheeler T, Thompson TC, Butler EB (2002) Combining radiotherapy with gene therapy (from the bench to the bedside): a novel treatment strategy for prostate cancer. Oncologist 7(5):458–466

    Article  Google Scholar 

  11. Ohno T (1995) Inducible regulatable promoter––ionizing radiation-inducible promoter EGR-1. Tanpakushitsu Kakusan Koso 40(17):2624–2630

    Google Scholar 

  12. Meyer RG, Kupper JH, Kandolf R, Rodemann HP (2002) Early growth response-1 gene (Egr-1) promoter induction by ionizing radiation in U87 malignant glioma cells in vitro. Eur J Biochem 269(1):337–346

    Article  Google Scholar 

  13. Hallahan DE, Qu S, Geng L, Cmelak A, Chakravarthy A, Martin W, Scarfone C, Giorgio T (2001) Radiation-mediated control of drug delivery. Am J Clin Oncol 24(5):473–480

    Article  Google Scholar 

  14. Kufe D, Weichselbaum R (2003) Radiation therapy: activation for gene transcription and the development of genetic radiotherapy-therapeutic strategies in oncology. Cancer Biol Ther 2(4):326–329

    Google Scholar 

  15. Anton M, Gomaa IE, von-Lukowicz T, Molls M, Gansbacher B, Wurschmidt F (2005) Optimization of radiation controlled gene expression by adenoviral vectors in vitro. Cancer Gene Ther 12(7):640–646

    Article  Google Scholar 

  16. Weichselbaum RR, Kufe DW, Advani SJ, Roizman B (2001) Molecular targeting of gene therapy and radiotherapy. Acta Oncol 40(6):735–738

    Article  Google Scholar 

  17. Yasumoto J, Imai Y, Takahashi A, Ohnishi K, Yuki K, Kirita T, Ohnishi T (2003) Analysis of apoptosis-related gene expression after X-ray irradiation in human tongue squamous cell carcinoma cells harboring wild-type or mutated p53 gene. J Radiat Res 44(1):41–45

    Article  Google Scholar 

  18. Maiti S, Meistrich ML, Wilson G, Shetty G, Marcelli M, McPhaul MJ, Morris PL, Wilkinson MF (2001) Irradiation selectively inhibits expression from the androgen-dependent Pem homeobox gene promoter in sertoli cells. Endocrinology 142(4):1567–1577

    Article  Google Scholar 

  19. Amundson SA, Bittner M, Meltzer P, Trent J, Fornace AJ Jr (2001) Induction of gene expression as a monitor of exposure to ionizing radiation. Radiat Res 156(5 Pt 2):657–661

    Article  Google Scholar 

  20. Nuyts S, Van-Mellaert L, Theys J, Landuyt W, Bosmans E, Anne J, Lambin P (2001) Radio-responsive recA promoter significantly increases TNFalpha production in recombinant clostridia after 2 Gy irradiation. Gene Ther 8(15):1197–1201

    Article  Google Scholar 

  21. Wenzel D, Schmidt A, Reimann K, Hescheler J, Pfitzer G, Bloch W, Fleischmann BK (2006) Endostatin, the proteolytic fragment of collagen XVIII, induces vasorelaxation. Circ Res 98(9):1203–1211

    Article  Google Scholar 

  22. O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88(2):277–285

    Article  Google Scholar 

  23. Folkman J (2006) Antiangiogenesis in cancer therapy––endostatin and its mechanisms of action. Exp Cell Res 312(5):594–607

    Article  Google Scholar 

  24. Passey S (2006) Endostatin gene therapy inhibits tumour growth. Lancet Oncol 7(3):199

    Article  Google Scholar 

  25. Watanabe T, Komuro Y, Kiyomatsu T, Kanazawa T, Kazama Y, Tanaka J, Tanaka T, Yamamoto Y, Shirane M, Muto T, Nagawa H (2006) Prediction of sensitivity of rectal cancer cells in response to preoperative radiotherapy by DNA microarray analysis of gene expression profiles. Cancer Res 66(7):3370–3374

    Article  Google Scholar 

  26. Boyd M, Mairs RJ, Cunningham SH, Mairs SC, McCluskey A, Livingstone A, Stevenson K, Brown MM, Wilson L, Carlin S, Wheldon TE (2001) A gene therapy/targeted radiotherapy strategy for radiation cell kill by. J Gene Med 3(2):165–172

    Article  Google Scholar 

  27. Urano M, Kuroda M, Reynolds R, Oberley TD, St-Clair DK (1995) Expression of manganese superoxide dismutase reduces tumor control radiation dose: gene-radiotherapy. Cancer Res 55(12):2490–2493

    Google Scholar 

  28. Shen C, Rattat D, Buck A, Mehrke G, Polat B, Ribbert H, Schirrmeister H, Mahren B, Matuschek C, Reske SN (2003) Targeting bcl-2 by triplex-forming oligonucleotides––a promising carrier for gene-radiotherapy. Cancer Biother Radiopharm 18(1):17–26

    Article  Google Scholar 

  29. Shin SY, Bahk YY, Ko J, Chung IY, Lee YS, Downward J, Eibel H, Sharma PM, Olefsky JM, Kim YH, Lee B, Lee YH (2006) Suppression of Egr-1 transcription through targeting of the serum response factor by oncogenic H-Ras. EMBO J 25(5):1093–1103

    Article  Google Scholar 

  30. Kawashita Y, Ohtsuru A, Miki F, Kuroda H, Morishita M, Kaneda Y, Hatsushiba K, Kanematsu T, Yamashita S (2005) Eradication of hepatocellular carcinoma xenografts by radiolabelled, lipiodol-inducible gene therapy. Gene Ther 12(22):1633–1639

    Article  Google Scholar 

  31. Greco O, Powell TM, Marples B, Joiner MC, Scott SD (2005) Gene therapy vectors containing CArG elements from the Egr1 gene are activated by neutron irradiation, cisplatin and doxorubicin. Cancer Gene Ther 12(7):655–662

    Article  Google Scholar 

  32. Lopez CA, Park JO, Mauceri HJ, Beckett MA, Weichselbaum RR, Posner MC (2004) Control of gene therapy by MDR1 and EGR1 promoter sequences in transcriptional targeting by chemotherapy (review). Int J Oncol 24(3):731–736

    Google Scholar 

  33. Harada T, Morooka T, Ogawa S, Nishida E (2001) ERK induces p35, a neuron-specific activator of Cdk5, through induction of Egr1. Nat Cell Biol 3(5):453–459

    Article  Google Scholar 

  34. Virolle T, Krones-Herzig A, Baron V, De Gregorio G, Adamson ED, Mercola D (2003) Egr1 promotes growth and survival of prostate cancer cells. Identification of novel Egr1 target genes. J Biol Chem 278(14):11802–11810

    Article  Google Scholar 

  35. Itasaka S, Komaki R, Herbst RS et al (2007) Endostatin improves radioresponse and blocks tumor revascularization after radiation therapy for A431 xenografts in mice. Int J Radiat Oncol Biol Phys 67(3):870–878

    Google Scholar 

  36. Shibata MA, Morimoto J, Doi H et al (2007) Electrogene therapy using endostatin, with or without suicide gene therapy, suppresses murine mammary tumor growth and metastasis. Cancer Gene Ther 14(3):268–278

    Article  Google Scholar 

  37. Hebert C, Siavash H, Norris K et al (2005) Endostatin inhibits nitric oxide and diminishes VEGF and collagen XVIII in squamous carcinoma cells. Int J Cancer 114(2):195–201

    Article  Google Scholar 

  38. Liang ZH, Wu PH, Li L (2004) Inhibition of tumor growth in xenografted nude mice with adenovirus-mediated endostatin gene comparison with recombinant endostatin protein. Chin Med J 117(12):1809–1814

    Google Scholar 

  39. Kim JY, Ross MI, Butler CE (2006) Reconstruction following radical resection of recurrent metastatic axillary melanoma. Plast Reconstr Surg 117(5):1576–1583

    Article  Google Scholar 

  40. Labialle S, Dayan G, Gambrelle J et al (2005) Characterization of the typical multidrug resistance profile in human uveal melanoma cell lines and in mouse liver metastasis derivatives. Melanoma Res 15(4):257–266

    Article  Google Scholar 

  41. Barnhill RL (2001) The biology of melanoma micrometastases. Recent Results Cancer Res 158:3–13

    Google Scholar 

  42. Tanabe K, Maeshima Y, Ichinose K et al (2007) Endostatin peptide, an inhibitor of angiogenesis, prevents the progression of peritoneal sclerosis in a mouse experimental model. Kidney Int 71(3):227–238

    Article  Google Scholar 

  43. Yang J, Jin G, Liu X et al (2007) Therapeutic effect of pEgr–IL18–B7.2 gene radiotherapy in B16 melanoma-bearing mice. Hum Gene Ther 18(4):323–332

    Article  Google Scholar 

  44. Datta R, Taneja N, Sukhatme VP, Qureshi SA, Weichselbaum R, Kufe DW (1993) Reactive oxygen intermediates target CC(A/T)6GG sequences to mediate activation of the early growth response 1 transcription factor gene by ionizing radiation. Proc Natl Acad Sci USA 90(6):2419–2422

    Article  ADS  Google Scholar 

  45. Wung BS, Cheng JJ, Chao YJ, Hsieh HJ, Wang DL (1999) Modulation of Ras/Raf/extracellular signal-regulated kinase pathway by reactive oxygen species is involved in cyclic strain-induced early growth response-1 gene expression in endothelial cells. Circ Res 84(7):804–812

    Google Scholar 

  46. Yan SF, Lu J, Xu L, Zou YS, Tongers J, Kisiel W, Mackman N, Pinsky DJ, Stern DM (2000) Pulmonary expression of early growth response-1: biphasic time course and effect of oxygen concentration. J Appl Physiol 88(6):2303–2309

    Google Scholar 

  47. Bek MJ, Reinhardt HC, Fischer KG, Hirsch JR, Hupfer C, Dayal E, Pavenstadt H (2003) Up-regulation of early growth response gene-1 via the CXCR3 receptor induces reactive oxygen species and inhibits Na+/K+-ATPase activity in an immortalized human proximal tubule cell line. J Immunol 170(2):931–940

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Xiuyi Li, Jilin Uinversity, for providing the endostatin gene.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-hua Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Ds., Wu, Cm., Huang, Th. et al. Combined effects of radiotherapy and endostatin gene therapy in melanoma tumor model. Radiat Environ Biophys 47, 285–291 (2008). https://doi.org/10.1007/s00411-007-0144-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-007-0144-x

Keywords

Navigation