Skip to main content

Advertisement

Log in

Detection of UV-induced activation of NF-κB in a recombinant human cell line by means of Enhanced Green Fluorescent Protein (EGFP)

  • Original Paper
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

The cellular protection reaction known as ultraviolet (UV) response leads to increased transcription of several genes. Parts of this transcriptional response are transmitted via activation of the Nuclear factor κB (NF-κB). The contribution of different UV radiation qualities to this process is not yet known. In a previous work, a stably transfected human cell line was developed which indicates activation of the NF-κB pathway by fluorescence of the reporters Enhanced Green Fluorescent Protein (EGFP) and its destabilized variant (d2EGFP) thereby allowing a fast and reliable monitoring of UV effects on the NF-κB pathway. Cells were exposed to a mercury low-pressure lamp or to simulated sunlight of different wavelength ranges and subjected to flow cytometric analysis after different post-irradiation periods. Growth capacity of cells after UV irradiation was quantified using a luminance measurement of crystal violet stained cell layers. In contrast to UVC and UVB, UVA radiation induced d2EGFP expression and NF-κB activation in a non-cytotoxic dose range. These results show that NF-κB plays a role in the UVA-induced gene activation in a non-cytotoxic dose range in a human epithelial cell line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AP-1:

Activated protein 1

cIAP:

Cellular inhibitor of apoptosis protein

CK2:

Casein kinase II

d2EGFP:

Destabilized Enhanced Green Fluorescent Protein

EGFP:

Enhanced Green Fluorescent Protein

Egr-1:

Early growth response gene

EMSA:

Electrophoretic mobility shift assay

FACS:

Fluorescence activated cell scanner

FBS:

Fetal bovine serum

Gadd45β:

Growth arrest and DNA damage inducible protein 45β

HEK:

Human embryonic kidney

IκB:

Inhibitor of NF-κB

IL:

Interleukin

NF-κB:

Nuclear factor κB

NRE:

NF-κB response element

PBS:

Phosphate-buffered saline

PTFE:

Polytetrafluoroethylene

Rel:

v-rel reticuloendotheliosis viral oncogene homolog

ROS:

Reactive oxygen species

SSL:

Simulated sunlight

TNF-α:

Tumor necrosis factor α

TRAF2:

TNF-receptor associated factor-2

UV:

Ultraviolet

XIAP:

X-linked inhibitor of apoptosis protein

References

  1. Urbach F (1997) Ultraviolet radiation and skin cancer of humans. J Photochem Photobiol B Biol 40:3–7

    Article  Google Scholar 

  2. de Gruijl FR, Longstreth J, Norval M, Cullen AP, Slaper H, Kripke ML, Takizawa Y, van der Leun JC (2003) Health effects from stratospheric ozone depletion and interactions with climate change. Photochem Photobiol Sci 2:16–28

    Article  Google Scholar 

  3. Jankowski J, Cader AB (1997) The effect of depletion of the earth ozone layer on the human health condition. Int J Occup Med Environ Health 10:349–364

    Google Scholar 

  4. Ananthaswamy HN, Pierceall PWE (1990) Molecular mechanisms of ultraviolet radiation carcinogenesis. Photochem Photobiol 52:1119–1136

    Google Scholar 

  5. Ito K, Kawanishi S (1997) Site-specific DNA damage induced by UVA radiation in the presence of endogenous photosensitizer. Biol Chem 378:1307–1312

    Google Scholar 

  6. Kielbassa C, Roza L, Epe B (1997) Wavelength dependence of oxidative DNA damage induced by UV and visible light. Carcinogenesis 18:811–816

    Article  Google Scholar 

  7. Petersen AB, Gniadecki R, Vicanova J, Thorn T, Wulf HC (2000) Hydrogen peroxide is responsible for UVA-induced DNA damage measured by alkaline comet assay in HaCaT keratinocytes. J Photochem Photobiol B Biol 59:123–131

    Article  Google Scholar 

  8. Fornace AJ Jr (1992) Mammalian genes induced by radiation; activation of genes associated with growth control. Ann Rev Genet 26:507–526

    Google Scholar 

  9. Derijard B, Hibi M, Wu IH, Barrett T, Su B, Deng T, Karin M, Davis RJ (1994) JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76:1025–1037

    Article  Google Scholar 

  10. Engelberg D, Klein C, Martinetto H, Struhl K, Karin M (1994) The UV response involving the Ras signaling pathway and AP-1 transcription factors is conserved between yeast and mammals. Cell 77:381–390

    Article  Google Scholar 

  11. Liu M, Dhanwada KR, Birt DF, Hecht S, Pelling JC (1994) Increase in p53 protein half-life in mouse keratinocytes following UV-B irradiation. Carcinogenesis 15:1089–1092

    Article  Google Scholar 

  12. Grether-Beck S, Olaizola-Horn S, Schmitt H, Grewe M, Jahnke A, Johnson JP, Briviba K, Sies H, Krutmann J (1996) Activation of transcription factor AP-2 mediates UVA radiation- and singlet oxygen-induced expression of the human intercellular adhesion molecule 1 gene. Proc Natl Acad Sci USA 93(25):14586–14591

    Article  ADS  Google Scholar 

  13. Huang RP, Wu JX, Fan Y, Adamson ED (1996) UV activates growth factor receptors via reactive oxygen intermediates. J Cell Biol 133(1):211–220

    Article  Google Scholar 

  14. Hofferer M, Wirbelauer C, Humar B, Krek W (1999) Increased levels of E2F–1-dependent DNA binding activity after UV- or gamma-irradiation. Nucleic Acids Res 27(2):491–495

    Article  Google Scholar 

  15. Rosette C, Karin M (1996) Ultraviolet light and osmotic stress: activation of the JNK cascade through multiple growth factor and cytokine receptors. Science 274:1194–1197

    Article  ADS  Google Scholar 

  16. Kulms D, Poppelmann B, Schwarz T (2000) Ultraviolet radiation-induced interleukin 6 release in HeLa cells is mediated via membrane events in a DNA damage-independent way. J Biol Chem 275:15060–15066

    Article  Google Scholar 

  17. Legrand-Poels S, Schoonbroodt S, Matroule JY, Piette J (1998) NF-kappa B: an important transcription factor in photobiology. J Photochem Photobiol B Biology 45:1–8

    Article  Google Scholar 

  18. Griffiths SD, Clarke AR, Healy LE, Ross G, Ford AM, Hooper ML, Wyllie AH, Greaves M (1997) Absence of p53 permits propagation of mutant cells following genotoxic damage. Oncogene 14:523–531

    Article  Google Scholar 

  19. Baldwin AS Jr (1996) The NF-kappaB and IkappaB proteins: new discoveries and insights. Ann Rev Immunol 14:649–681

    Article  Google Scholar 

  20. Verma IM, Stevenson JK, Schwarz EM, Van Antwerp D, Miyamoto S (1995) Rel/NFkappaB/IkappaB family: intimate tales of association and dissociation. Genes Dev 9:2723–2735

    Article  Google Scholar 

  21. Baeuerle PA, Baltimore D (1996) NF-kappa B: ten years after. Cell 87:13–20

    Article  Google Scholar 

  22. Whiteside ST, Israel A (1997) I kappa B proteins: structure, function and regulation. Semin Cancer Biol 8:75–82

    Article  Google Scholar 

  23. Schmitz ML, Bacher S, Kracht M (2001) I kappa B-independent control of NF-kappa B activity by modulatory phosphorylations. Trends Biochem Sci 26:186–190

    Article  Google Scholar 

  24. Karin M (1999) How NF-kappaB is activated: the role of the IkappaB kinase (IKK) complex. Oncogene 18:6867–6874

    Article  Google Scholar 

  25. Kato TJ, Delhase M, Hoffmann A, Karin M (2003) CK2 is a C-Terminal terminal IkappaB Kkinase responsible for NF-kappaB activation during the UV response. Mol Cell 12:829–839

    Article  Google Scholar 

  26. Lenardo MJ, Baltimore D (1989) NF-kappa B: a pleiotropic mediator of inducible and tissue-specific gene control. Cell 58:227–229

    Article  Google Scholar 

  27. Schoemaker MH, Ros JE, Homan M, Trautwein C, Liston P, Poelstra K, van Goor H, Jansen PL, Moshage H (2002) Cytokine regulation of pro- and anti-apoptotic genes in rat hepatocytes: NF-kappaB-regulated inhibitor of apoptosis protein 2 (cIAP2) prevents apoptosis. J Hepatol 36:742–750

    Article  Google Scholar 

  28. Chu ZL, McKinsey TA, Liu L, Gentry JJ, Malim MH, Ballard DW (1997) Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-kappaB control. Proc Natl Acad Sci USA 94:10057–10062

    Article  ADS  Google Scholar 

  29. Tamatani M, Che YH, Matsuzaki H, Ogawa S, Okado H, Miyake S, Mizuno T, Tohyama M (1999) Tumor necrosis factor induces Bcl-2 and Bcl-x expression through NFkappaB activation in primary hippocampal neurons. J Biol Chem 274:8531–8538

    Article  Google Scholar 

  30. Cooper JT, Stroka DM, Brostjan C, Palmetshofer A, Bach FH, Ferran C (1996) A20 blocks endothelial cell activation through a NF-kappaB-dependent mechanism. J Biol Chem 271:18068–18073

    Article  Google Scholar 

  31. Wu MX, Ao Z, Prasad KV, Wu R, Schlossman SF (1998) IEX-1L, an apoptosis inhibitor involved in NF-kappaB-mediated cell survival. Science 281:998–1001

    Article  ADS  Google Scholar 

  32. Zhu L, Fukuda S, Cordis G, Das DK, Maulik N (2001) Anti-apoptotic protein survivin plays a significant role in tubular morphogenesis of human coronary arteriolar endothelial cells by hypoxic preconditioning. FEBS Lett 508:369–374

    Article  Google Scholar 

  33. Tang G, Minemoto Y, Dibling B, Purcell NH, Li Z, Karin M, Lin A (2001) Inhibition of JNK activation through NF-kappaB target genes. Nature 414:313–317

    Article  ADS  Google Scholar 

  34. De Smaele E, Zazzeroni F, Papa S, Nguyen DU, Jin R, Jones J, Cong R, Franzoso G (2001) Induction of gadd45beta by NF-kappaB downregulates pro-apoptotic JNK signalling. Nature 414:308–313

    Article  ADS  Google Scholar 

  35. Lee JU, Hosotani R, Wada M, Doi R, Kosiba T, Fujimoto K, Miyamoto Y, Tsuji S, Nakajima S, Nishimura Y, Imamura M (1999) Role of Bcl-2 family proteins (Bax, Bcl-2 and Bcl-X) on cellular susceptibility to radiation in pancreatic cancer cells. Eur J Cancer 35:1374–1380

    Article  Google Scholar 

  36. Zhang G, Gurtu V, Kain SR (1996) An enhanced green fluorescent protein allows sensitive detection of gene transfer in mammalian cells. Biochem Biophys Res Commun 227:707–711

    Article  Google Scholar 

  37. Hellweg CE, Baumstark-Khan C, Horneck G (2001) The suitability of enhanced green fluorescent protein (EGFP) as reporter component for bioassays. Anal Chim Acta 426:175–184

    Article  Google Scholar 

  38. Hellweg CE, Baumstark-Khan C, Horneck G (2001) Enhanced green fluorescent protein as reporter protein for biomonitoring of cytotoxic effects in mammalian cells. Anal Chim Acta 427:191–199

    Article  Google Scholar 

  39. Li X, Zhao X, Fang Y, Jiang X, Duong T, Fan C, Huang CC, Kain SR (1998) Generation of destabilized green fluorescent protein as a transcription reporter. J Biol Chem 273:34970–34975

    Article  Google Scholar 

  40. Hellweg CE, Baumstark-Khan C, Horneck G (2003) Generation of stably transfected mammalian cell lines as fluorescent NF-κB activation reporter assay. J Biomol Screen 8(5):511–521

    Article  Google Scholar 

  41. Baumstark-Khan C, Hellweg CE, Scherer K, Horneck G (1999) Mammalian cells as biomonitors of UV-exposure. Anal Chim Acta 387:281–287

    Article  Google Scholar 

  42. Vile GF, Tanew-Ilitschew A, Tyrrell RM (1995) Activation of NF-kappa B in human skin fibroblasts by oxidative stress generated by UVA radiation. Photochem Photobiol 62:463–68

    Google Scholar 

  43. Djavaheri-Mergny M, Gras MP, Mergny JL, Dubertret L (1999) UVA-induced decrease in nuclear factor-kappaB activity in human keratinocytes. Biochem J 338:607–613

    Article  Google Scholar 

  44. Adachi M, Gazel A, Pintucci G, Shuck A, Shifteh S, Ginsburg D, Rao LS, Kaneko T, Freedberg IM, Tamaki K, Blumenberg M (2003). Specificity in stress response: epidermal keratinocytes exhibit specialized UV-responsive signal transduction pathways. DNA Cell Biol 22:665–677

    Article  Google Scholar 

  45. Chaturvedi V, Qin JZ, Denning MF, Choubey D, Diaz MO, Nickoloff BJ (2001) Abnormal NF-kappaB signaling pathway with enhanced susceptibility to apoptosis in immortalized keratinocytes. J Dermatol Sci 26:67–78

    Article  Google Scholar 

  46. Chaturvedi V, Qin JZ, Denning MF, Choubey D, Diaz MO, Nickoloff BJ (1999) Apoptosis in proliferating, senescent, and immortalized keratinocytes. J Biol Chem 274:23358–23367

    Article  Google Scholar 

  47. Qin JZ, Chaturvedi V, Denning MF, Choubey D, Diaz MO, Nickoloff BJ (1999) Role of NF-kappaB in the apoptotic-resistant phenotype of keratinocytes. J Biol Chem 274:37957–37964

    Article  Google Scholar 

  48. Sanchez RH, Schwarz C, Shang J, Tebbe B (2002) Trioxsalen in the presence of UVA is able to induce nuclear factor kappa B binding activity in HaCaT keratinocytes. Skin Pharmacol Appl Skin Physiol 15:335–341

    Article  Google Scholar 

  49. Campbell KJ, Chapman NR, Perkins ND (2001) UV stimulation induces nuclear factor kappaB (NF-kappaB) DNA-binding activity but not transcriptional activation. Biochem Soc Trans 29:688–691

    Article  Google Scholar 

  50. Stein B, Rahmsdorf HJ, Steffen A, Litfin M, Herrlich P (1989) UV-induced DNA damage is an intermediate step in UV-induced expression of human immunodeficiency virus type 1, collagenase, c- fos, and metallothionein. Mol Cell Biol 9:5169–5181

    Google Scholar 

  51. Devary Y, Rosette C, DiDonato JA, Karin M (1993) NF-kappaB activation by ultraviolet light is not dependent on a nuclear signal. Science 261:1442–1445

    Article  ADS  Google Scholar 

  52. Simon MM, Aragane Y, Schwarz A, Luger TA, Schwarz T (1994) UVB light induces nuclear factor kappa B (NF kappa B) activity independently from chromosomal DNA damage in cell-free cytosolic extracts. J Invest Dermatol 102:422–427

    Article  Google Scholar 

  53. Helenius M, Makelainen L, Salminen A (1999) Attenuation of NF-kappaB signaling response to UVB light during cellular senescence. Exp Cell Res 248:194–202

    Article  Google Scholar 

  54. Kitazawa M, Nakano T, Chuujou H, Shiojiri E, Iwasaki K, Sakamoto K (2002) Intracellular redox regulation by a cystine derivative suppresses UV-induced NF-kappa B activation. FEBS-Lett 526:106–110

    Article  Google Scholar 

  55. Maalouf S, El-Sabban M, Darwiche N, Gali-Muhtasib H (2002) Protective effect of vitamin E on ultraviolet B light-induced damage in keratinocytes. Mol Carcinog 34:121–130

    Article  Google Scholar 

  56. Maziere C, Floret S, Santus R, Morliere P, Marcheux V, Maziere JC (2003) Impairment of the EGF signaling pathway by the oxidative stress generated with UVA. Free Radic Biol Med 34:629–636

    Article  Google Scholar 

  57. Gibbs S, Lohman F, Teubel W, van de Putte P, Backendorf C (1990) Characterization of the human spr2 promoter: induction after UV irradiation or TPA treatment and regulation during differentiation of cultured primary keratinocytes. Nucl Acids Res 18:4401–4407

    Article  Google Scholar 

  58. Ghosh R, Tummala R, Mitchell DL (2003) Ultraviolet radiation-induced DNA damage in promoter elements inhibits gene expression. FEBS Lett 554:427–432

    Article  Google Scholar 

  59. Ghosh R, Mitchell DL (1999) Effect of oxidative DNA damage in promoter elements on transcription factor binding. Nuclic Acids Res 27:3213–3218

    Article  Google Scholar 

  60. Tobin D, van Hogerlinden M, Toftgard R (1998) UVB-induced association of tumor necrosis factor (TNF) receptor 1/TNF receptor-associated factor-2 mediates activation of Rel proteins. Proc Natl Acad Sci USA 95:565–569

    Article  ADS  Google Scholar 

  61. Skiba B, Neill B, Piva TJ (2005) Gene expression profiles of TNF-alpha, TACE, furin, IL-1beta and matrilysin in UVA- and UVB-irradiated HaCat cells. Photodermatol Photoimmunol Photomed 21(4):173–182

    Article  Google Scholar 

  62. Pourzand C, Watkin RD, Brown JE, Tyrrell RM (1999) Ultraviolet a radiation induces immediate release of iron in human primary skin fibroblasts: the role of ferritin. Proc Natl Acad Sci USA 96:6751–6756

    Article  ADS  Google Scholar 

  63. Reelfs O, Tyrrell RM, Pourzand C (2004) Ultraviolet a radiation-induced immediate iron release is a key modulator of the activation of NF-kappaB in human skin fibroblasts. J Invest Dermatol 122:1440–1447

    Article  Google Scholar 

  64. Baldwin AS (2001) Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. J Clin Invest 107:241–246

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported in part by the German Academy of Aviation and Travel Medicine (Deutsche Akademie für Flug- und Reisemedizin). The authors would like to thank Anna Brozyna, Patrick Lau, Susanne Bogner, and Claudia Schmitz for excellent technical assistance and Dr. Rainer Facius for recording the spectrum of the sun simulator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine E. Hellweg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hellweg, C.E., Baumstark-Khan, C. Detection of UV-induced activation of NF-κB in a recombinant human cell line by means of Enhanced Green Fluorescent Protein (EGFP). Radiat Environ Biophys 46, 269–279 (2007). https://doi.org/10.1007/s00411-007-0104-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-007-0104-5

Keywords

Navigation