Skip to main content
Log in

The role of atomic inner shell relaxations for photon-induced DNA damage

  • Original Paper
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

The influence of relaxations of atoms making up the DNA and atoms attached to it on radiation-induced cellular DNA damage by photons was studied by very detailed Monte Carlo track structure calculations, as an unusually high importance of inner shell ionizations for biological action was suspected from reports in the literature. For our calculations cross sections for photons and electrons for inner shell orbitals were newly derived and integrated into the biophysical track structure simulation programme PARTRAC. Both the local energy deposition in a small sphere around the interacting relaxed atom, and the number of relaxations per Gy and Gbp were calculated for several target geometries and many monoenergetic photon irradiations. Elements with the highest order number yielded the largest local energy deposition after interaction. The atomic relaxation after ionization of the L1 shell was found to be more biologically efficient than that of the K shell for high Z atoms. Generally, the number of inner shell relaxations produced by photon irradiation was small in comparison to the total number of double strand breaks generated by such radiation. Furthermore, the energy dependence of the total number of photon-induced and electron-induced relaxations at the DNA atoms does not agree with observed RBE values for different biological endpoints. This suggests that the influence of inner shell relaxations of DNA atoms on radiation-induced DNA damage is in general rather small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Maezawa H, Hieda K, Kobayashi K, Furusawa Y, Mori T, Suzuki K, Ito T (1988) Effects of monoenergetic X-rays with resonance energy of bromine K-absorption edge on bromouracil-labeled E. coli cells. Int J Radiat Biol Relat Stud Phys Chem Med 53:301-308

    CAS  PubMed  Google Scholar 

  2. Usami N, Kobayashi K, Maezawa H, Hieda K, Ishizaka S (1991) Biological effects of Auger processes of bromine on yeast cells induced by monochromatic synchrotron X-rays. Int J Radiat Biol 60:757–768

    CAS  PubMed  Google Scholar 

  3. Menke H, Kohnlein W, Joksch S, Halpern A (1991) Strand breaks in plasmid DNA, natural and brominated, by low-energy X-rays. Int J Radiat Biol 59:85–96

    CAS  PubMed  Google Scholar 

  4. Furusawa Y, Maezawa H, Suzuki K, Yamamoto Y, Kobayashi K, Hieda K (1993) Uracil-DNA glycosylase produces excess lethal damage induced by an Auger cascade in BrdU-labeled bacteriophage T1. Int J Radiat Biol 64:157–164

    CAS  PubMed  Google Scholar 

  5. Yamada H, Kobayashi K, Hieda K (1993) Effects of the K-shell X-ray absorption of phosphorus on the scission of the pentadeoxythymidylic acid. Int J Radiat Biol 63:151–159

    CAS  PubMed  Google Scholar 

  6. Watanabe M, Suzuki M, Watanabe K, Suzuki K, Usami N, Yokoya A, Kobayashi K (1993) Mutagenic and transforming effects of soft-X-rays with resonance energy of phosphorus K-absorption edge. Int J Radiat Biol 61:161–168

    Google Scholar 

  7. Lawrence T, Davis MA, Normolle DP (1995) Effect of bromodeoxyuridine on radiation-induced DNA damage and repair based on DNA fragment size using pulsed-field gel electrophoresis. Radiat Res 144:282–287

    CAS  PubMed  Google Scholar 

  8. Shinohara K, Nakano H, Ohara H (1996) Detection of Auger enhancement induced in HeLa cells labeled with iododeoxyuridine and irradiated with 150 kV X-rays—Effects of cysteamine and dimethylsulfoxide. Acta Oncol 35:869–875

    CAS  PubMed  Google Scholar 

  9. Hieda K, Hirono T, Azami A et al. (1996) Single- and double-strand breaks in pBR322 plasmid DNA by monochromatic X-rays on and off the K-absorption peak of phosphorus. Int J Radiat Biol 70:437–445

    Article  CAS  PubMed  Google Scholar 

  10. Takakura K (1996) Double-strand breaks in DNA induced by the K-shell ionization of calcium atoms. Acta Oncol 35:883–888

    CAS  PubMed  Google Scholar 

  11. Yokoya A, Watanabe R, Hara T (1999) Single- and double-strand breaks in solid pBR322 DNA induced by ultrasoft X-rays at photon energies of 388, 435 and 573 eV. J Radiat Res 40:145–158

    Article  CAS  Google Scholar 

  12. Herve du Penhoat MA, Fayard B et al. (1999) Lethal effect of carbon K-shell photoionizations in Chinese hamster V79 cell nuclei: experimental method and theoretical analysis. Radiat Res 151:649–658

    PubMed  Google Scholar 

  13. LeSech C, Takakura K, Saint-Marc C, Frohlich H, Charlier M, Usami N, Kobayashi K (2000) Strand break induction by photoabsorption in DNA-bound molecules. Radiat Res 153:454–458

    CAS  PubMed  Google Scholar 

  14. LeSech C, Takakura K, Saint-Marc C, Frohlich H, Charlier M, Usami N, Kobayashi K (2001) Enhanced strand break induction of DNA by resonant metal-innershell photoabsorption. Can J Physiol Pharmacol 79:196–200

    Article  CAS  PubMed  Google Scholar 

  15. Fayard B, Touati A, Herve du Penhoat MA et al. (2002) Cell inactivation and double-strand breaks: the role of core ionizations, as probed by ultrasoft X-rays. Radiat Res 157:128–140

    CAS  PubMed  Google Scholar 

  16. Touati A, Herve du Penhoat MA, Fayard B et al. (2002) Biological effects induced by K photo-ionisation in and near constituent atoms of DNA. Radiat Prot Dosim 99:83–84

    CAS  Google Scholar 

  17. Goodhead DT, Thacker J, Cox R (1979) Effectiveness of 0.3 keV carbon ultrasoft X-rays for the inactivation and mutation of cultured mammalian cells. Int J Radiat Biol 36:101–114

    CAS  Google Scholar 

  18. Frankenberg D, Goodhead DT, Frankenberg-Schwager M, Harbich R, Bance DA, Wilkinson RE (1986) Effectiveness of 1.5 keV aluminum K and 0.3 keV carbon K characteristic X-rays at inducing DNA double-strand breaks in yeast cells. Int J Radiat Biol 50:727–741

    CAS  Google Scholar 

  19. Hill MA, Stevens DL, Stuart Townsend KM, Goodhead DT (2001) Comments on the recently reported low biological effectiveness of ultrasoft X-rays. Radiat Res 155:503–510

    CAS  PubMed  Google Scholar 

  20. Frankenberg D, Kühn H, Frankenberg-Schwager M, Lenhard W, Beckonert S (1995) 0.3 keV Carbon K ultrasoft X-rays are four times more effective than γ-rays when inducing oncogenic cell transformation at low doses. Int J Radiat Biol 68:593–601

    CAS  PubMed  Google Scholar 

  21. DeLara CM, Hill MA, Jenner TJ, Papworth D, O’Neill P (2001) Dependence of the yield of DNA double-strand breaks in Chinese hamster V79–4 cells on the photon energy of ultrasoft X-rays. Radiat Res 155:440–448

    CAS  PubMed  Google Scholar 

  22. Thacker J,Wilkinson RE, Goodhead DT (1986) The induction of chromosome exchange aberrations by carbon ultrasoft X-rays in V79 hamster cells. Int J Radiat Biol 49:645–656

    CAS  Google Scholar 

  23. Bernhardt Ph, Friedland W, Jacob P, Paretzke HG (2003) Modeling of ultrasoft X-ray-induced damage using structured higher order DNA targets. Int J Mass Spectrom 223–224:579–597

  24. Cullen DE, Hubbel JH, Kissel L (1997) EPDL97 The evaluated data library, ‘97 Version. Lawrence Livermore National Laboratory, UCRL-ID-50400 6

  25. Perkins ST, Cullen DE, Chen MH, Hubbel JH, Rathkopf R, Scofield J (1991) Tables and graphs of atomic subshell and relaxation data derived from the LLNL evaluated atomic data library (EADL), Z=1–100. Lawrence Livermore National Laboratory. UCRL-50400 30

  26. ICRU (1989) Tissue substitutes in radiation dosimetry and measurement. Report 44. International Commission on Radiation Units and Measurements, Bethesda, MD

  27. Chiu TK, Dickerson RE (2000) 1 Å crystal structures of B-DNA reveal sequence-specific binding and groove-specific bending of DNA by magnesium and calcium. J Mol Biol 301:915–945

    Article  CAS  PubMed  Google Scholar 

  28. Yuan H, Quintana J, Dickerson RE (1992) Alternative structures for alternating poly(dA-dT) tracts: the structure of the B-DNA decamer C-G-A-T-A-T-A-T-C-G. Biochemistry 31:8009–8021

    CAS  PubMed  Google Scholar 

  29. Wing RM, Pjura P, Drew HR, Dickerson RE (1984) The primary mode of binding of cisplatin to a B-DNA dodecamer: C-G-C-G-A-A-T-T-C-G-C-G. EMBO J 3:1201–1206

    CAS  PubMed  Google Scholar 

  30. Coste F, Malinge JM, Serre L, Shepard W, Roth M, Leng M, Zelwer C (1999) Crystal structure of a double-stranded DNA containing a cisplatin interstrand cross-link at 1.63 Å resolution: hydration at the platinated site. Nucleic Acids Res 27:1837–1846

    Article  CAS  PubMed  Google Scholar 

  31. Dingfelder M, Hantke D, Inokuti M, Paretzke HG (1998) Electron inelastic scattering cross sections in liquid water. Radiat Phys Chem 53:1–18

    Article  CAS  Google Scholar 

  32. Bernhardt Ph, Paretzke HG (2003) Calculation of electron impact ionization cross sections of DNA using the Deutsch-Mark and Binary-Encounter-Bethe formalisms. Int J Mass Spectrom 223–224:599–611

  33. Kim YK, Rudd ME (1994) Binary-encounter-dipole model for electron-impact ionization. Phys Rev A50:3954–3967

    Google Scholar 

  34. Kim YK, Santos JP, Parente F (2000) Extension of the binary-encounter-dipole model to relativistic incident electrons. Phys Rev A62:052710

    Google Scholar 

  35. Frisch Æ, Frisch MJ (1998) Gaussian 98 user’s reference. Gaussian, Pittsburgh

  36. Binkley JS, Pople JA, Dobosh PA (1974) The calculation of spin-restricted single-determinant wavefunctions. Mol Phys 28:1423–1429

    CAS  Google Scholar 

  37. Binkley JS, Pople JA, Hehre WJ (1980) Self-consistent molecular orbital methods. XXI. Small split-valence basis sets for first-row elements. J Am Chem Soc 102:939–947

    CAS  Google Scholar 

  38. Pomplun E, Booz J, Charlton DE (1987) A Monte Carlo simulation of Auger cascades. Radiat Res 111:533–552

    CAS  PubMed  Google Scholar 

  39. Pomplun E (2000) Auger electron spectra. Acta Oncol 39:673–679

    Article  CAS  PubMed  Google Scholar 

  40. Pomplun E (1991) A new DNA target model for track structure calculations and its first application to I-125 Auger electrons. Int J Radiat Biol 59:625–642

    CAS  PubMed  Google Scholar 

  41. Michalik V, Begusova M (1994) Target model of nucleosome particle for track structure calculations and DNA damage modelling. Int J Radiat Biol 66:267–277

    CAS  PubMed  Google Scholar 

  42. Friedland W, Jacob P, Paretzke HP, Merzagora M, Ottolenghi A (1999) Simulation of DNA fragments distributions after irradiation with photons. Radiat Environ Biophys 38:39–47

    Article  CAS  PubMed  Google Scholar 

  43. Roots R, Okada S (1975) Estimation of life times and diffusion distances of radicals involved in X-ray-induced DNA strand breaks or killing of mammalian cells. Radiat Res 64:306–320

    CAS  PubMed  Google Scholar 

  44. Prise KM, Ahnström G, Belli M et al. (1998) A review of DSB induction data for varying quality radiations. Int J Radiat Biol 74:173–184

    Article  CAS  PubMed  Google Scholar 

  45. Charlton DE, Booz J (1981) A Monte Carlo treatment of the decay of 125I. Radiat Res 87:10–23

    CAS  PubMed  Google Scholar 

  46. Humm JL (1984) The analysis of Auger electrons released following the decay of radioisotopes and photoelectric interactions and their contribution to energy deposition. KFA Report JUL-1932, pp 100–109

  47. Terrissol M, Vrigneaud JM (2001) Modelling ultrasoft X-rays effects on DNA. Proceedings of Lisbon MC 2000 Conference, Springer

  48. Prise KM, Folkhard M, Davies S, Michael BD (1989) Measurements of DNA damage and cell killing in Chinese hamster V79 cells irradiated with aluminum characteristic ultrasoft X-rays. Radiat Res 117:489–499

    CAS  PubMed  Google Scholar 

  49. Hill MA, Veccia MD, Townsend KMS, Goodhead DT (1998) Production and dosimetry of copper L ultrasoft X-rays for biological and biochemical investigations. Phys Med Biol 43:351–363

    Article  CAS  PubMed  Google Scholar 

  50. Goodhead DT, Thacker J, Cox R (1981) Is selective absorption of ultrasoft x-rays biologically important in mammalian cells? Phys Med Biol 26:1115–1127

    Article  CAS  PubMed  Google Scholar 

  51. Schmid E, Regulla D, Kramer H-M, Harder D (2002) The effect of 29 kV X-rays on the dose response of chromosome aberrations in human lymphocytes. Radiat Res 158:771–777

    CAS  PubMed  Google Scholar 

  52. Krisch RE, Sauri CJ (1975) Further studies of DNA damage and lethality from the decay of iodine-125 in bacteriophages. Int J Radiat Biol 27:553–560

    CAS  Google Scholar 

  53. Landau LD, Lifshitz EM (1985) Quantum mechanics. Pergamon Press, Oxford

Download references

Acknowledgments

We thank Drs. Mitio Inokuti, Yong-Ki Kim and Michael Dingfelder for helpful discussions concerning the electron cross sections. This work is supported by the European Community under Contract No. FIGR-CT-2003-508842.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Friedland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernhardt, P., Friedland, W. & Paretzke, H.G. The role of atomic inner shell relaxations for photon-induced DNA damage. Radiat Environ Biophys 43, 77–84 (2004). https://doi.org/10.1007/s00411-004-0238-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-004-0238-7

Keywords

Navigation