Skip to main content
Log in

Fractionation of trace and platinum-group elements during metamorphism of komatiitic chromites from the early Archean Gorumahishani greenstone belt, Singhbhum Craton (eastern India)

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

It is well established that the major and minor element contents of chromites are subject to change during greenschist to amphibolite facies metamorphism. During upper amphibolite facies metamorphism, chromite can be completely converted to chrome magnetite. However, not all elements are affected to the same degree, the concentrations of +2 ions (e.g. Zn, Co, Mn) being particularly vulnerable to modification. The degree to which trace elements, particularly the platinum-group elements (PGE), are affected has not been closely examined. The compositions and textures of chromites from komatiites of the Gorumahishani greenstone belt of the Singhbhum Craton (India) have experienced a range of metamorphic conditions from greenschist to amphibolite facies, providing the opportunity to study the changes of trace and platinum-group element composition with metamorphic grade. Five types of altered chromites are identified from the komatiitic suite of rocks in the ~120-km-long greenstone belt. The type-I chromites are non-porous and characterized by the least modified cores. These chromites are mostly present in the northern Maharajgunj-Tua Dungri section where rocks show metamorphism from greenschist to greenschist-amphibolite transition facies. The type-II and type-III chromites are porous and mostly found in the southern Kapili section of the greenstone belt where rocks show metamorphism up to the mid-amphibolite facies. Type-IV and type-V chromites are completely modified to ferritchromit and chrome magnetite, respectively, and are present in the komatiitic rocks from the entire greenstone belt. The central cores of the type-I and type-II grains have relatively higher concentrations of mobile trace elements (e.g. Zn, Co, and Mn) with higher Mg# [Mg/(Mg + Fe2+)], lower Cr# [Cr/(Cr + Al)], and lower Fe3+/R3+ (R3+ = Fe3+ + Cr3+ + Al3+) ratios than their respective rims. Significantly higher concentrations of the immobile trace elements (e.g. Ti and V) in the cores of the type-II grains relative to their chrome magnetite rims from the Kapili section and to the type-I varieties from other sections might be due to the metamorphism of the komatiitic rocks under higher-grade conditions (amphibolite facies). In situ LA-ICPMS analysis for PGE reveals a relatively higher concentration of Ru and Rh in the rims of the type-I chromites than in the cores which is due to the diffusion of these elements from the normal spinel structure of the cores towards the bivalent octahedral sites of the inverse spinel structure of the chrome magnetite rims during metamorphic processes. The lower concentrations of Os, Ir, Ru, and Rh in the cores of the type-II chromites from the Kapili section might be related to the metamorphism of the rocks under higher-grade conditions that facilitated the diffusion of these elements to associated sulphide or platinum-group mineral or alloy phases. The calculated partition coefficients of Sc, Ti, V, Mn, Ni, Ga, Os, Ir, Ru, and Rh from the least altered chromite cores assuming equilibrium with the parental komatiitic melt also suggest the variable effects of metamorphism when compared with global experimental and empirical values of the natural samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adhikari A, Mukherjee S, Vadlamani R (2021) A plume-mantle interaction model for the petrogenesis of komatiite-komatiitic basalt-basalt-basaltic andesite volcanism from the Paleoarchean (3.57-3.31 Ga) Iron Ore Group greenstone belts, Singhbhum craton, India: Constraints from trace element geochemistry and Sm-Nd geochronology. Lithos 398–399:106315

    Article  Google Scholar 

  • Ahmed AH (2007) Diversity of platinum-group minerals in podiform chromitites of the late proterozoic ophiolite, eastern Desert, Egypt: genetic implications. Ore Geol Rev 32:1–19

    Article  Google Scholar 

  • Alt JC, Shanks WC, Bach W, Paulick H, Garrido CJ, Beaudoin G (2007) Hydrothermal alteration and microbial sulfate reduction in peridotite and gabbro exposed by detachment faulting at the Mid-Atlantic Ridge, 15°20′N (ODP Leg 209): a sulfur and oxygen isotope study. Geochem Geophys Geosyst 8:Q08002

    Article  Google Scholar 

  • Andrews DRA, Brenan JM (2002) Phase equilibrium constraints on the magmatic origin of laurite + Ru-Os-Ir alloy. Can Mineral 40:1705–1716

    Article  Google Scholar 

  • Arguin J-P, Pagé P, Barnes S-J, Yu S-Y, Song X-Y (2016) The effect of chromite crystallization on the distribution of osmium, iridium, ruthenium and rhodium in picritic magmas: an example from the Emeishan large igneous province, Southwestern China. J Petrol 57:1019–1048

    Article  Google Scholar 

  • Arndt NT, Lesher CM, Barnes SJ (2008) Komatiite. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bach W, Garrido CJ, Paulick H, Harvey J, Rosner M (2004) Seawater-peridotite interactions: first insights from ODP Leg 209, MAR 15N. Geophys Geosyst Geochem. https://doi.org/10.1029/2004GC000744

    Article  Google Scholar 

  • Ballhaus C, Sylvester P (2000) Noble metal enrichment processes in the Merensky Reef, Bushveld Complex. J Petrol 41:545–561

    Article  Google Scholar 

  • Banerjee R, Mondal SK, Reisberg L, Zhou X (2021) Origin of Ni-Cu-sulfide minerals in the komatiitic rock suite of the Archean Gorumahishani Greenstone belt Singhbhum Craton (eastern India). Virtual Goldschmidt. https://doi.org/10.7185/gold2021.3584

    Article  Google Scholar 

  • Barnes SJ (1998) Chromite in komatiites, 1. Magmatic controls on crystallization and composition. J Petrol 39:1689–1720

    Article  Google Scholar 

  • Barnes SJ (2000) Chromite in komatiites, II. Modification during greenschist to mid amphibolite facies metamorphism. J Petrol 41:387–409

    Article  Google Scholar 

  • Barnes SJ (2006) Komatiites: petrology, volcanology, metamorphism, and geochemistry. Econ Geol Spec Publ 13:13–49

    Google Scholar 

  • Barnes SJ, Fiorentini ML (2008) Iridium, ruthenium and rhodium in komatiite: Evidence for iridium alloy saturation. Chem Geol 257:44–58

    Article  Google Scholar 

  • Barnes SJ, Roeder PL (2001) The range of spinel compositions in terrestrial mafic and ultramafic rocks. J Petrol 42:2279–2302

    Article  Google Scholar 

  • Barnes SJ, Boyd R, Korneliussen A, Nilsson LP, Often M, Pederson RB, Robins B (1988) The use of mantle normalization and metal ratios in discriminating between the effects of partial melting, crystal fractionation and sulfide segregation on platinum-group elements, gold, nickel and copper: examples from Norway. In: Prichard HM, Potts PJ, Bowles JFW, Cribb SJ (eds) Geo-platinum, vol 87. Elsevier, Amsterdam, pp 113–143

    Chapter  Google Scholar 

  • Basu AR, Bandyopadhyay PK, Chakrabarti R, Zou H (2008) Late 3.4 Ga algoma-type BIF in the Eastern Indian Craton. Geochim Cosmochim Acta 72:A59

    Google Scholar 

  • Borisov A, Palme H (1995) The solubility of iridium in silicate melts: new data from experiments with Ir10Pt90 alloys. Geochim Cosmochim Acta 59(3):481–485

    Article  Google Scholar 

  • Brenan JM, McDonough WF, Dalpe C (2003) Experimental constraints on the partitioning of rhenium and some platinum-group elements between olivine and silicate melt. Earth Planet Sci Lett 212:135–150

    Article  Google Scholar 

  • Brenan JM, Finnigan CF, McDonough WF, Homolova V (2012) Experimental constraints on the partitioning of Ru, Rh, Ir, Pt and Pd between chromite and silicate melt: The importance of ferric iron. Chem Geol 302–303:16–32

    Article  Google Scholar 

  • Burkhard DJM (1993) Accessory chromian spinels: their coexistence and alteration in serpentinites. Geochim Cosmochim Acta 57:1297–1306

    Article  Google Scholar 

  • Canil D (2002) Vanadium in peridotites, mantle redox and tectonic environments: Archean to present. Earth Planet Sci Lett 195:75–90

    Article  Google Scholar 

  • Capobianco CJ, Drake MJ (1990) Partitioning of ruthenium, rhodium, and palladium between spinel and silicate melt and implications for platinum group element fractionation trends. Geochim Cosmochim Acta 54:869–874

    Article  Google Scholar 

  • Capobianco CJ, Hervig RL, Drake MJ (1994) Experiments on crystal/liquid partitioning of Ru, Rh and Pd for magnetite and hematite solid solutions crystallized from silicate melt. Chem Geol 113:23–43

    Article  Google Scholar 

  • Chaudhuri T, Mazumder R, Arima M (2015) Petrography and geochemistry of Mesoarchaean komatiites from the eastern Iron Ore belt, Singhbhum craton, India, and its similarity with ‘Barberton type komatiite.’ J Afr Earth Sci 101:135–147

    Article  Google Scholar 

  • Chaudhuri T, Satish-Kumar M, Mazumder R, Biswas S (2017) Geochemistry and Sm-Nd isotopic characteristics of the Paleoarchean Komatiites from Singhbhum Craton, Eastern India and their implications. Precambrian Res 298:385–402

    Article  Google Scholar 

  • Colás V, González-Jiménez JM, Griffin WL, Fanlo I, Gervilla F, O’Reilly SY, Pearson NJ, Kerestedjian T, Proenza JA (2014) Fingerprints of metamorphism in chromite: new insights from minor and trace elements. Chem Geol 389:137–152

    Article  Google Scholar 

  • Colás V, Padrón-Navarta JA, González-Jiménez JM, Fanlo I, López Sánchez-Vizcaíno V, Gervilla F, Bolibar R (2017) The role of silica in the hydrous metamorphism of chromite. Ore Geol Rev 90:274–286

    Article  Google Scholar 

  • Colás V, González-Jiménez JM, Camprubí A, Proenza JA, Griffin WL, Fanlo I, O’Reilly SY, Gervilla F, González-Partida E (2019) A reappraisal of the metamorphic history of the Tehuitzingo chromitite, Puebla state, Mexico. Int Geol Rev 61(7):1706–1727

    Article  Google Scholar 

  • Colás V, Subias I, González-Jiménez JM, Proenza J, Fanlo I, Camprubí A, Griffin W, Gervilla F, O’Reilly S, Escayola M (2020) Metamorphic fingerprints of Fe-rich chromitites at Eastern Pampean Ranges. Bol Soc Geol Mex 72(3):A080420

    Article  Google Scholar 

  • Droop GTR (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analysis, using stoichiometric criteria. Mineral Mag 51:431–435

    Article  Google Scholar 

  • Eslami A, Arai S, Miura M, Mackizadeh MA (2018) Metallogeny of the peridotite-hosted magnetite ores of the Nain ophiolite, Central Iran: Implications for Fe concentration processes during multi-episodic serpentinization. Ore Geol Rev 95:680–694

    Article  Google Scholar 

  • Evans BW, Frost BR (1975) Chrome-spinel in progressive metamorphism- a preliminary analysis. Geochim Cosmochim Acta 39:959–972

    Article  Google Scholar 

  • Fabriès J (1979) Spinel-olivine geothermometry in peridotites from ultramafic complexes. Contrib Min Petrol 69:329–336

    Article  Google Scholar 

  • Fiorentini ML, Stone WE, Beresford SW, Barley ME (2004) Platinum-group element alloy inclusions in chromites from Archaean mafic-ultramafic units: evidence from the Abitibi and the Agnew-Wiluna Greenstone Belts. Min Petrol 82:341-355**

    Article  Google Scholar 

  • Fleet ME, Angeli N, Pan Y (1993) Oriented chlorite lamellae in chromite from the Pedra Branca Mafic-Ultramafic Complex, Ceari, Brazil. Am Min 78:68–74

    Google Scholar 

  • Fonseca ROC, Campbell IH, O’Neill HStC, Allen CM (2009) Solubility of Pt in sulphide mattes: implications for the genesis of PGE-rich horizons in layered intrusions. Geochim Cosmochim Acta 73:5764–5777

    Article  Google Scholar 

  • Gahlan HA, Arai S, Ahmed AH, Ishida Y, Abdel Aziz YM, Rahimi A (2006) Origin of magnetite veins in serpentinite from the Late Proterozoic Bou-Azzer ophiolite, Anti-Atlas, Morocco: an implication for mobility of iron during serpentinization. J Afr Earth Sci 46:318–330

    Article  Google Scholar 

  • Garuti G, Pushkarev E, Zaccarini F (2002) Composition and paragenesis of Pt alloys from chromitites of the Uralian-Alaskan type Kytlym and Uktus complexes, Northern and Central Urals, Russia. Can Min 40:357–376

    Article  Google Scholar 

  • Gervilla F, Padrón-Navarta J, Kerestedjian T, Sergeeva I, González-Jiménez J, Fanlo I (2012) Formation of ferrian chromite in podiform chromitites from the Golyamo Kamenyane serpentinite, Eastern Rhodopes, SE Bulgaria: a two-stage process. Contrib Min Petrol 164:1–15

    Article  Google Scholar 

  • Gervilla F, Asta M, Fanlo I, Grolimund D, Sanchez DF, Samson V, Hunziker D, Colás V, González-Jiménez JM, Kerestedjian T, Sergeeva I (2019) Diffusion pathways of Fe2+ and Fe3+ during the formation of ferrian chromite: a µXANES study. Contrib Min Petrol 65:174–180

    Google Scholar 

  • Godel B, Barnes SJ, Gürer D, Austin P, Fiorentini ML (2013) Chromite in komatiites: 3D morphologies with implications for crystallization mechanisms. Contrib Min Petrol 165:173–189

    Article  Google Scholar 

  • González-Jiménez JM, Kerestedjian T, Proenza-Fernández JA, Gervilla-Linares F (2009) Metamorphism on chromite ores from the Dobromirtsi ultramafic massif, Rhodope Mountains (SE Bulgaria). Geol Acta 7:413–429

    Google Scholar 

  • González-Jiménez JM, Griffin WL, Proenza JA, Gervilla F, O’Reilly SY, Akbulut M, Pearson NJ, Arai S (2014) Chromitites in ophiolites: How, where, when, why? Part II. The crystallisation of chromitites. Lithos 189:140–158

    Article  Google Scholar 

  • Habtoor AM, Ahmed AH, Akizawa N, Harbi H, Arai S (2017) Chemical homogeneity of high-Cr chromitites as indicator for widespread invasion of boninitic melt in mantle peridotite of Bir Tuluha ophiolite, Northern Arabian Shield, Saudi Arabia. Ore Geol Rev 90:243–259

    Article  Google Scholar 

  • Horn I, Foley SF, Jackson SE, Jenner GA (1994) Experimentally determined partitioning of high field strength and selected transition elements between spinel and basaltic melt. Chem Geol 117:193–218

    Article  Google Scholar 

  • Irvine TN (1967) Chromian spinel as a petrogenetic indicator. Part II. Petrological applications. Can J Earth Sci 4:71–103

    Article  Google Scholar 

  • Kamenetsky VS, Crawford AJ, Meffre S (2001) Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. J Petrol 42:655–671

    Article  Google Scholar 

  • Kamenetsky VS, Park J-W, Mungall JE, Pushkarev EV, Ivanov AV, Kamenetsky MB, Yaxley GM (2015) Crystallization of platinum-group minerals from silicate melts: Evidence from Cr spinel-hosted inclusions in volcanic rocks. Geology 43:903–906

    Article  Google Scholar 

  • Kimball KL (1990) Effects of hydrothermal alteration on the compositions of chromian spinels. Contrib Min Petrol 105:337–346

    Article  Google Scholar 

  • Lepage LD (2003) ILMAT: an excel worksheet for ilmenite-magnetite geothermometry and geobarometry. Comput Geosci 29:673–678

    Article  Google Scholar 

  • Lindsley DH (1981) The crystal chemistry and structure of oxide minerals as exemplified by the Fe-Ti oxides. In: Rumble D (ed) Oxide minerals, vol 3. Mineralogical Society of America, Washington, pp 1–52

    Google Scholar 

  • Locmelis M, Pearson NJ, Barnes SJ, Fiorentini ML (2011) Ruthenium in komatiitic chromite. Geochim Cosmochim Acta 75:3645–3661

    Article  Google Scholar 

  • Locmelis M, Fiorentini ML, Barnes SJ, Hanski EJ, Kobussene AF (2018) Ruthenium in chromite as indicator for magmatic sulfide liquid equilibration in mafic-ultramafic systems. Ore Geol Rev 97:152–170

    Article  Google Scholar 

  • Loferski JP (1986) Petrology of metamorphosed chromite-bearing ultramafic rocks from the Red Lodge District. USGS Bull, Professional Paper 44

  • Merlini A, Grieco G, Diella V (2009) Ferritchromite and chromian-chlorite formation in mélange-hosted Kalkan chromitite (Southern Urals, Russia). Am Min 94(10):1459–1467

    Article  Google Scholar 

  • Mondal SK (2009) Chromite and PGE deposits of Mesoarchean ultramafic-mafic suites within the greenstone belts of the Singhbhum craton, India: implications for mantle heterogeneity and tectonic setting. J Geol Soc India 73:36–51

    Article  Google Scholar 

  • Mondal SK, Ripley EM, Li C, Frei R (2006) The genesis of Archean chromitites from the Nuasahi and Sukinda massifs in the Singhbhum craton, India. Precambr Res 148:45–66

    Article  Google Scholar 

  • Mondal SK, Khatun S, Prichard HM, Satyanarayanan M, Kumar GR (2019b) Platinum-group element geochemistry of boninite-derived Mesoarchean chromitites and ultramafic-mafic cumulate rocks from the Sukinda Massif (Orissa, India). Ore Geol Rev 104:722–744

    Article  Google Scholar 

  • Mondal SK, Das E, Banerjee R, Reisberg L (2019a) Trace Element in Chromites of Komatiites from the Archean Gorumahishani Greenstone Belt, Singhbhum Craton (India). Goldschmidt 2019a, Barcelona (Spain)

  • Mukherjee R, Mondal SK, Rosing MT, Frei R (2010) Compositional variations in the Mesoarchean chromites of the Nuggihalli schist belt, Western Dharwar Craton (India): potential parental melts and implication for tectonic setting. Contrib Min Petrol 160:865–885

    Article  Google Scholar 

  • Mukherjee R, Mondal SK, Gonzaléz-Jiménez JM, Griffin WL, Pearson NJ, O’Reilly SY (2015) Trace element fingerprints of chromite, magnetite and sulfide from the 3.1 Ga ultramafic-mafic rocks of the Nuggihalli greenstone belt, Western Dharwar Craton (India). Contrib Min Petrol 169:1–23

    Article  Google Scholar 

  • Mukhopadhyay J, Beukes NJ, Armstrong RA, Zimmermann U, Ghosh G, Medda RA (2008) Dating the oldest Greenstone in India, a 3.51-Ga precise U-Pb SHRIMP zircon age for Dacitic Lava of the Southern Iron Ore Group Singhbhum Craton. J Geol 116:449–461

    Article  Google Scholar 

  • Nell J, O’Neill HStC, (1997) The Gibbs free energy of formation and heat capacity of ß-Rh2O3 and “MgRh2O4”, the MgO-Rh-O phase diagram, and constraints on the stability of Mg2Rh4+O4. Geochim Cosmochim Acta 61:4159–4171

    Article  Google Scholar 

  • Nicklas RW, Puchtel IS, Ash RD (2016) High-precision determination of the oxidation state of komatiite lavas using vanadium liquid-mineral partitioning. Chem Geol 433:36–45

    Article  Google Scholar 

  • Nicklas RW, Puchtel IS, Ash RD, Piccoli PM, Hanski E, Nisbet EG, Waterton PM, Pearson DG, Anbar AD (2019) Secular mantle oxidation across the Archean Proterozoic boundary: evidence from V partitioning in komatiites and picrites. Geochim Cosmochim Acta 250:49–75

    Article  Google Scholar 

  • Pagé P, Barnes S-J (2009) Using trace elements in chromites to constrain the origin of podiform chromitites in the Thetford Mines ophiolite, Québec, Canada. Econ Geol 104:997–1018

    Article  Google Scholar 

  • Pagé P, Barnes S-J (2016) The influence of chromite on osmium, iridium, ruthenium and rhodium distribution during early magmatic processes. Chem Geol 420:51–68

    Article  Google Scholar 

  • Pagé P, Barnes S-J, Bédard JH, Zientek ML (2012) In situ determination of Os, Ir, and Ru in chromites formed from komatiite, tholeiite and boninite magmas: implications for chromite control of Os, Ir and Ru during partial melting and crystal fractionation. Chem Geol 302:3–15

    Article  Google Scholar 

  • Park J-W, Campbell IH, Eggins SM (2012) Enrichment of Rh, Ru, Ir and Os in Cr spinels from oxidized magmas: evidence from the Ambae volcano, Vanuatu. Geochim Cosmochim Acta 78:28–50

    Article  Google Scholar 

  • Park J-W, Kamenetsky V, Campbell I, Park G, Hanski E, Pushkarev E (2017) Empirical constraints on partitioning of platinum group elements between Cr-spinel and primitive terrestrial magmas. Geochim Cosmochim Acta 216:393–416

    Article  Google Scholar 

  • Peach CL, Mathez EA (1996) Constraints on the formation of platinum-group element deposits in igneous rocks. Econ Geol 91:439–450

    Article  Google Scholar 

  • Prichard HM, Barnes S-J, Fisher PC, Pagé P, Zientek ML (2017) Laurite and associated PGM in the Stillwater Chromitites: Implications for processes of formation, and comparisons with laurite in the Bushveld and ophiolitic chromitites. Can Min 55(1):121–144

    Article  Google Scholar 

  • Proenza JA, Ortega-Gutiérrez F, Camprubí A, Tritlla J, Elías-Herrera M, Reyes-Salas M (2004) Paleozoic serpentinite-enclosed chromitites from Tehuitzingo (Acatlán Complex, southern Mexico): a petrological and mineralogical study. J South Am Earth Sci 16:649–666

    Article  Google Scholar 

  • Proenza JA, Zaccarini F, Escayola M, Cábana C, Shalamuk A, Garuti G (2008) Composition and textures of chromite and platinum-group minerals in chromitites of the western ophiolitic belt from Córdoba Pampeans Ranges, Argentine. Ore Geol Rev 33:32–48

    Article  Google Scholar 

  • Puchtel IS, Humayun M, Campbell AJ, Sproule RA, Lesher CM (2004) Platinum group element geochemistry of komatiites from the Alexo and Pyke Hill areas, Ontario, Canada. Geochim Cosmochim Acta 68(6):1361–1383

    Article  Google Scholar 

  • Righter K, Downs RT (2001) The crystal structures of synthetic Re- and PGE-bearing magnesioferrite spinels: implications for impacts, accretion and the mantle. Geophys Res Lett 28:619–622

    Article  Google Scholar 

  • Righter K, Campbell AJ, Humayun M, Hervig RL (2004) Partitioning of Ru, Rh, Pd, Re, Ir, and Au between Cr-bearing spinel, olivine, pyroxene and silicate melts. Geochim Cosmochim Acta 68:867–880

    Article  Google Scholar 

  • Righter K, Leeman WP, Hervig RL (2006) Partitioning of Ni, Co and V between spinel structured oxides and silicate melts: importance of spinel composition. Chem Geol 227:1–25

    Article  Google Scholar 

  • Roeder PL (1994) Chromite: from the fiery rain of chondrules to the Kilauea Iki lava lake. Can Min 32:729–746

    Google Scholar 

  • Roeder PL, Campbell IH, Jamieson HE (1979) A re-evaluation of the olivine-spinel geothermometer. Contrib Min Petrol 68:325–334

    Article  Google Scholar 

  • Sack RO, Ghiorso MS (1991) Chromian spinels as petrogenetic indicators: thermodynamic and petrological applications. Am Min 76:827–847

    Google Scholar 

  • Saha AK (1994) Crustal evolution of Singhbhum-North Orissa, eastern India. Geol Soc India 27:1–341

    Google Scholar 

  • Sahu NK, Mukherjee MM (2001) Spinifex textured komatiite from Badampahar-Gorumahishani schist belt, Mayurbhanj District, Orissa. J Geol Soc India 57:529–534

    Google Scholar 

  • Sattari P, Brenan JM, Horn I, McDonough WF (2002) Experimental constraints on the sulphide and chromite-silicate melt partitioning behaviour of rhenium and platinum-group elements. Econ Geol 97:385–398

    Article  Google Scholar 

  • Sievwright RH, O’Neill HSC, Tolley J, Wilkinson JJ, Berry AJ (2020) Diffusion and partition coefficients of minor and trace elements in magnetite as a function of oxygen fugacity at 1150 ºC. Contrib Min Petrol 175(5):1–21

    Article  Google Scholar 

  • Stowe CW (1997) Chromite deposits of the Shurugwi greenstone belt, Zimbabwe. In: Stowe CW (ed) Evolution of chromium ore fields. Hutchinson Ross Publication, New York, pp 71–88

    Google Scholar 

  • Törmänen T, Konnunaho JP, Hanski E, Moilanen M, Heikura P (2016) The Paleoproterozoic komatiite-hosted PGE mineralization at Lomalampi, Central Lapland Greenstone Belt, northern Finland. Miner Deposita 51:411–430

    Article  Google Scholar 

  • Tredoux M, Lindsay NM, Davies G, McDonald I (1995) The fractionation of platinum-group elements in magmatic systems, with the suggestion of a novel causal mechanism. S Afr J Geol 98:157–167

    Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Min 95:185–187

    Article  Google Scholar 

  • Wylie AG, Candela PA, Burke TM (1987) Compositional zoning in unusual Zn-rich chromite from the Sykesville district of Maryland and its bearing on the origin of “ferritchromit.” Am Min 72(3–4):413–422

    Google Scholar 

  • Yadav PK, Das M (2017) Geochemistry of Kapili komatiite from Badampahar-Gorumahishani greenstone belt, Singhbhum craton, India and its resemblance with ‘Barberton Komatiite.’ Int j Res Anal Rev 4:495–507

    Google Scholar 

  • Yadav PK, Pradhan UK, Mukherjee A, Sar RN, Sahoo P, Das M (2015) Basic characterization of Kapili komatiite from Badampahar-Gorumahishani schist belt, Singhbhum Craton, Odisha, India. Indian J Geosci 69:1–12

    Google Scholar 

  • Yu H, Zhang H-F, Zou H-B, Yang Y-H (2019) Minor and trace element variations in chromite from the Songshugou dunites, North Qinling Orogen: evidence for amphibolite-facies metamorphism. Lithos 328–329:146–158

    Article  Google Scholar 

  • Zhou M-F, Kerrich R (1992) Morphology and composition of chromite in komatiites from the Belingwe Greenstone Belt, Zimbabwe. Can Miner 30:303–317

    Google Scholar 

Download references

Acknowledgements

Research for this article has been conducted under the CEFIPRA-Indo-French International Collaborative Project-6007-1 between Sisir Mondal and Laurie Reisberg and represents a component of the Ph.D. thesis work of CEFIPRA Research Scholar Ratul Banerjee. This study was partly supported by the National Research Foundation of Korea funded by the Ministry of Science and ICT (2022R1A2C1011741) granted to Jung-Woo Park. Two anonymous reviewers of the journal are acknowledged for their useful reviews of this article. Tim Grove, journal Editor-In-Chief, is acknowledged for his editorial support and great patience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sisir K. Mondal.

Additional information

Communicated by Timothy L. Grove.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, R., Mondal, S.K., Reisberg, L. et al. Fractionation of trace and platinum-group elements during metamorphism of komatiitic chromites from the early Archean Gorumahishani greenstone belt, Singhbhum Craton (eastern India). Contrib Mineral Petrol 177, 75 (2022). https://doi.org/10.1007/s00410-022-01943-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-022-01943-4

Keyword

Navigation