Skip to main content
Log in

Carbon and nitrogen isotope, and mineral inclusion studies on the diamonds from the Pozanti–Karsanti chromitite, Turkey

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Pozanti–Karsanti ophiolite (PKO) is one of the largest oceanic remnants in the Tauride belt, Turkey. Micro-diamonds were recovered from the podiform chromitites, and these diamonds were investigated based on morphology, color, cathodoluminescence, nitrogen content, carbon and nitrogen isotopes, internal structure and inclusions. The diamonds recovered from the PKO are mainly mixed-habit diamonds with sectors of different brightness under the cathodoluminescence images. The total δ13C range of the PKO diamonds varies between − 18.8 and − 28.4‰, with a principle δ13C mode at − 25‰. Nitrogen contents of the diamonds range from 7 to 541 ppm with a mean value of 171 ppm, and the δ15N values range from − 19.1 to 16.6‰, with a δ15N mode of − 9‰. Stacking faults and partial dislocations are commonly observed in the Transmission Electron Microscopy foils whereas inclusions are rather rare. Combinations of (Ca0.81Mn0.19)SiO3, NiMnCo-alloy and nano-sized, quenched fluid phases were observed as inclusions in the PKO diamonds. We believe that the 13C-depleted carbon signature of the PKO diamonds derived from previously subducted crustal matter. These diamonds may have crystallized from C-saturated fluids in the asthenospheric mantle at depth below 250 km which were subsequently carried rapidly upward by asthenospheric melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Advokaat EL, van Hinsbergen DJ et al (2014) Late Cretaceous extension and Palaeogene rotation-related contraction in Central Anatolia recorded in the Ayhan-Büyükkışla basin. Int Geol Rev 56(15):1813–1836

    Google Scholar 

  • Anand M, Taylor LA et al (2004) Nature of diamonds in Yakutian eclogites: views from eclogite tomography and mineral inclusions in diamonds. Lithos 77(1):333–348

    Google Scholar 

  • Anzolini C, Angel RJ et al (2016) Depth of formation of CaSiO3-walstromite included in super-deep diamonds. Lithos 265:138–147

    Google Scholar 

  • Avcı E, Uysal İ et al (2016) Ophiolitic chromitites from the Kızılyüksek area of the Pozantı-Karsantı ophiolite (Adana, southern Turkey): implication for crystallization from a fractionated boninitic melt. Ore Geol Rev 90:166–183

    Google Scholar 

  • Bai W, Zhou M et al (1993) Possibly diamond-bearing mantle peridotites and podiform chromitites in the Luobusa and Donqiao ophiolites, Tibet. Can J Earth Sci 30(8):1650–1659

    Google Scholar 

  • Ballhaus C, Wirth R et al (2017) Ultra-high pressure and ultra-reduced minerals in ophiolites may form by lightning strikes. Geochem Perspect Lett 5:42–46

    Google Scholar 

  • Ballhaus C, Fonseca ROC et al (2018) Reply to comment on ultra-high pressure and ultra-reduced minerals in ophiolites may form by lightning strikes by Griffin et al., no evidence for transition ophiolite, metamorphism in the Luobusa ophiolite. Geochem Perspect Lett 7:3–4

    Google Scholar 

  • Barkley MC, Downs RT et al (2011) Structure of walstromite, BaCa2Si3O9, and its relationship to CaSiO3-walstromite and wollastonite-II. Am Mineral 96(5–6):797–801

    Google Scholar 

  • Bender ML, Ku T et al (1966) Manganese nodules: their evolution. Science 151(3708):325–328

    Google Scholar 

  • Bottinga Y (1968) Carbon isotope fractionation between graphite, diamond and carbon dioxide. Earth Planet Sci Lett 5:301–307

    Google Scholar 

  • Boyd SR, Pillinger CT et al (1988) Fractionation of nitrogen isotopes in a synthetic diamond of mixed crystal habit. Nature 331(6157):604–607

    Google Scholar 

  • Brenker FE, Vincze L et al (2005) Detection of a Ca-rich lithology in the Earth’s deep (> 300 km) convecting mantle. Earth Planet Sci Lett 236(3):579–587

    Google Scholar 

  • Bulanova GP, Pearson DG et al (2002) Carbon and nitrogen isotope systematics within a sector-growth diamond from the Mir kimberlite, Yakutia. Chem Geol 188(1):105–123

    Google Scholar 

  • Bulanova GP, Walter MJ et al (2010) Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: subducted protoliths, carbonated melts and primary kimberlite magmatism. Contrib Mineral Petrol 160(4):489–510

    Google Scholar 

  • Burnham AD, Thomson AR et al (2015) Stable isotope evidence for crustal recycling as recorded by superdeep diamonds. Earth Planet Sci Lett 432:374–380

    Google Scholar 

  • Cartigny P (2005) Stable isotopes and the origin of diamond. Elements 1(2):79–84

    Google Scholar 

  • Cartigny P (2010) Mantle-related carbonados? Geochemical insights from diamonds from the Dachine komatiite (French Guiana). Earth Planet Sci Lett 296(3):329–339

    Google Scholar 

  • Cartigny P, Harris JW, Taylor A, Davies R, Javoy M (2003) On the possibility of a kinetic fractionation of nitrogen stable isotopes during natural diamond growth. Geochim Cosmochim Acta 67(8):1571–1576

    Google Scholar 

  • Cartigny P, Harris JW et al (1998) Eclogitic diamond formation at Jwaneng: no room for a recycled component. Science 280(5368):1421–1424

    Google Scholar 

  • Cartigny P, De Corte K et al (2001) The origin and formation of metamorphic microdiamonds from the Kokchetav massif, Kazakhstan: a nitrogen and carbon isotopic study. Chem Geol 176(1):265–281

    Google Scholar 

  • Cartigny P, Palot M et al (2014) Diamond formation: a stable isotope perspective. Annu Rev Earth Planet Sci 42:699–732

    Google Scholar 

  • Çelik ÖF, Chiaradia M (2008) Geochemical and petrological aspects of dike intrusions in the Lycian ophiolites (SW Turkey): a case study for the dike emplacement along the Tauride Belt Ophiolites. Int J Earth Sci 97(6):1151–1164

    Google Scholar 

  • Çelik ÖF, Michel D (2003) Origin of metamorphic soles and their post-kinematic mafic dyke swarms in the Antalya and Lycian ophiolites, SW Turkey. Geol J 3–4(38):235–256

    Google Scholar 

  • Chen Y, Yang J et al (2018) Diamonds and other unusual minerals from peridotites of the Myitkyina ophiolite, Myanmar. J Asian Earth Sci 164:179–193

    Google Scholar 

  • Coplen TB, Krouse HR et al (1992) Reporting of nitrogen-isotope abundances (technical report). Pure Appl Chem 64(6):907–908

    Google Scholar 

  • Craig H (1957) Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochimica Et Cosmochimica Acta 12(1):133–149

    Google Scholar 

  • Das S, Basu AR et al (2017) In situ peridotitic diamond in Indus ophiolite sourced from hydrocarbon fluids in the mantle transition zone. Geology 45(8):755–758

    Google Scholar 

  • De S, Heaney PJ et al (1998) Microstructural observations of polycrystalline diamond: a contribution to the carbonado conundrum. Earth Planet Sci Lett 164(3):421–433

    Google Scholar 

  • Deines P (1980) The carbon isotopic composition of diamonds: relationship to diamond shape, color, occurrence and vapor composition. Geochim Cosmochim Acta 44(7):943–961

    Google Scholar 

  • Deines P, Harris JW et al (1993) Depth-related carbon isotope and nitrogen concentration variability in the mantle below the Orapa kimberlite, Botswana, Africa. Geochim Cosmochim Acta 57(12):2781–2796

    Google Scholar 

  • Dickson J (1991) Disequilibrium carbon and oxygen isotope variations in natural calcite. Nature 353(6347):842

    Google Scholar 

  • Dilek Y, Thy P et al (1999) Structure and petrology of Tauride ophiolites and mafic dike intrusions (Turkey): implications for the Neotethyan ocean. Geol Soc Am Bull 111(8):1192–1216

    Google Scholar 

  • Dobrzhinetskaya LF, Wirth R et al (2009) High-pressure highly reduced nitrides and oxides from chromitite of a Tibetan ophiolite. Proc Natl Acad Sci 106(46):19233–19238

    Google Scholar 

  • Frost DJ, McCammon CA (2008) The redox state of Earth’s mantle. Annu Rev Earth Planet Sci 36:389–420

    Google Scholar 

  • Fujino K, Suzuki K et al (2008) High-pressure phase relation of MnSiO3 up to 85 GPa: existence of MnSiO3 perovskite. Am Mineral 93(4):653–657

    Google Scholar 

  • Gasparik T, Wolf K et al (1994) Experimental determination of phase relations in the CaSiOt system from 8 to 15 GPa. Am Mineral 79:1219–1222

    Google Scholar 

  • Griffin WL, Afonso JC et al (2016) Mantle recycling: transition zone metamorphism of Tibetan ophiolitic peridotites and its tectonic implications. J Petrol 57(4):1–30

    Google Scholar 

  • Gurney JJ, Helmstaedt HH et al (2010) Diamonds through time. Econ Geol 105(3):689–712

    Google Scholar 

  • Haggerty SE (1999) A diamond trilogy: superplumes, supercontinents, and supernovae. Science 285(5429):851–860

    Google Scholar 

  • Harte B (2010) Diamond formation in the deep mantle: the record of mineral inclusions and their distribution in relation to mantle dehydration zones. Miner Mag 74(2):189–215

    Google Scholar 

  • Hayman PC, Kopylova MG et al (2005) Lower mantle diamonds from Rio Soriso (Juina area, Mato Grosso, Brazil). Contrib Mineral Petrol 149(4):430–445

    Google Scholar 

  • Heaney PJ, Vicenzi EP et al (2005) Strange diamonds: the mysterious origins of carbonado and framesite. Elements 1(2):85–89

    Google Scholar 

  • Hein JR, Spinardi F et al (2015) Critical metals in manganese nodules from the Cook Islands EEZ, abundances and distributions. Ore Geol Rev 68:97–116

    Google Scholar 

  • Hinsbergen DJJ, Maffione M et al (2016) Tectonic evolution and paleogeography of the Kırşehir Block and the Central Anatolian Ophiolites, Turkey. Tectonics 35(4):983–1014

    Google Scholar 

  • Hogberg K, Stachel T et al (2016) Carbon and nitrogen isotope systematics in diamond: different sensitivities to isotopic fractionation or a decoupled origin? Lithos 265:16–30

    Google Scholar 

  • Howell D, Griffin WL et al (2013) A spectroscopic and carbon-isotope study of mixed-habit diamonds: impurity characteristics and growth environment. Am Mineral 98(1):66–77

    Google Scholar 

  • Howell D, Griffin WL et al (2015a) Diamonds in ophiolites: contamination or a new diamond growth environment? Earth Planet Sci Lett 430(1):284–295

    Google Scholar 

  • Howell D, Stern RA et al (2015b) Nitrogen isotope systematics and origins of mixed-habit diamonds. Geochim Cosmochim Acta 157:1–12

    Google Scholar 

  • Huang Z, Yang J et al (2015) The discovery of diamonds in chromitites of the hegenshan ophiolite, Inner Mongolia. China Acta Geologica Sinica (English Edition) 89(2):341–350

    Google Scholar 

  • Huss GR (2005) Meteoritic nanodiamonds: messengers from the stars. Elements 1(2):97–100

    Google Scholar 

  • Javoy M, Pineau F et al (1986) Carbon and nitrogen isotopes in the mantle. Chem Geol 57(1–2):41–62

    Google Scholar 

  • Joswig W, Stachel T et al (1999) New Ca-silicate inclusions in diamonds—tracers from the lower mantle. Earth Planet Sci Lett 173(1):1–6

    Google Scholar 

  • Kaiser W, Bond WL (1959) Nitrogen, a major impurity in common type I diamond. Phys Rev 115(4):857

    Google Scholar 

  • Kaminsky F (2012) Mineralogy of the lower mantle: a review of ‘super-deep’ mineral inclusions in diamond. Earth Sci Rev 110(1):127–147

    Google Scholar 

  • Kaminsky FV, Ryabchikov ID et al (2015) Oxidation potential in the Earth’s lower mantle as recorded by ferropericlase inclusions in diamond. Earth Planet Sci Lett 417:49–56

    Google Scholar 

  • Kanzaki M, Stebbins JF et al (1991) Characterization of quenched high pressure phases in CaSiO3 system by XRD and 29Si NMR. Geophys Res Lett 18(3):463–466

    Google Scholar 

  • Keller RA, Taylor LA et al (1999) Detailed pull-apart of a diamondiferous eclogite xenolith: implications for mantle processes during diamond genesis. Proc 7th Int Kimberlite Conf 1:397–402

    Google Scholar 

  • Kirkley MB, Gurney JJ et al (1991) The application of C isotope measurements to the identification of the sources of C in diamonds: a review. Appl Geochem 6(5):477–494

    Google Scholar 

  • Lang AR (1974) On the growth-sectorial dependence of defects in natural diamonds. Proc R Soc Lond A 340(1621):233–248

    Google Scholar 

  • Lang AR, Bulanova GP et al (2007) Defects in a mixed-habit Yakutian diamond: studies by optical and cathodoluminescence microscopy, infrared absorption, Raman scattering and photoluminescence spectroscopy. J Cryst Growth 309(2):170–180

    Google Scholar 

  • Li L, Bebout GE (2005) Carbon and nitrogen geochemistry of sediments in the Central American convergent margin: insights regarding subduction input fluxes, diagenesis, and paleoproductivity. J Geophys Res Solid Earth 110(B11):1–17

    Google Scholar 

  • Lian D, Yang J et al (2017a) Deep mantle origin and ultra-reducing conditions in podiform chromitite: diamond, moissanite, and other unusual minerals in podiform chromitites from the Pozanti–Karsanti ophiolite, southern Turkey. Am Mineral 102(5):1101–1113

    Google Scholar 

  • Lian D, Yang J et al (2017b) Geochemical, geochronological, and Sr–Nd isotopic constraints on the origin of the mafic dikes from the Pozanti–Karsanti ophiolite: implications for tectonic evolution. J Geol 125(2):223–239

    Google Scholar 

  • Lian D, Yang J et al (2018) Mineralogy and geochemistry of peridotites and chromitites in the aladag ophiolite (S. Turkey): melt evolution of the cretaceous neotethyan mantle. J Geol Soc. https://doi.org/10.1144/jgs2018-060

    Google Scholar 

  • Lytwyn JN, Casey JF (1995) The geochemistry of postkinematic mafic dike swarms and subophiolitic metabasites, Pozanti–Karsanti ophiolite, Turkey: evidence for ridge subduction. Geol Soc Am Bull 107(7):830–850

    Google Scholar 

  • McGowan NM, Griffin WL et al (2015) Tibetan chromitites: excavating the slab graveyard. Geology 43(2):179–182

    Google Scholar 

  • Meyers PA, Eadie BJ (1993) Sources, degradation and recycling of organic matter associated with sinking particles in Lake Michigan. Org Geochem 20(1):47–56

    Google Scholar 

  • Mikhail S, Guillermier C et al (2014a) Empirical evidence for the fractionation of carbon isotopes between diamond and iron carbide from the Earth’s mantle. Geochem Geophys Geosyst 15(4):855–866

    Google Scholar 

  • Mikhail S, Verchovsky AB et al (2014b) Constraining the internal variability of the stable isotopes of carbon and nitrogen within mantle diamonds. Chem Geol 366:14–23

    Google Scholar 

  • Minoura K, Hoshino K et al (1997) Late Pleistocene-Holocene paleoproductivity circulation in the Japan Sea: sea-level control on δ13C and δ15N records of sediment organic material. Palaeogeogr Palaeoclimatol Palaeoecol 135(1–4):41–50

    Google Scholar 

  • Narita H, Kichiro K et al (1977) The crystal structures of MnSiO3 polymorphs (rhodonite-and pyroxmangite-type). Mineralogical Journal 8(6):329–342

    Google Scholar 

  • Nestola F, Korolev N et al (2018) CaSiO3 perovskite in diamond indicates the recycling of oceanic crust into the lower mantle. Nature 555:237–242

    Google Scholar 

  • Ogasawara Y (2005) Microdiamonds in ultrahigh-pressure metamorphic rocks. Elements 1(2):91–96

    Google Scholar 

  • Ohashi Y, Finger LW (1978) The role of octahedral cations in pyroxenoid crystal chemistry; I, Bustamite, wollastonite, and the pectolite–schizolite–serandite series. Am Mineral 63(3–4):274–288

    Google Scholar 

  • Onasch CM, Vennemann TW (1995) Disequilibrium partitioning of oxygen isotopes associated with sector zoning in quartz. Geology 23(12):1103–1106

    Google Scholar 

  • Palot M, Cartigny P et al (2012) Evidence for deep mantle convection and primordial heterogeneity from nitrogen and carbon stable isotopes in diamond. Earth Planet Sci Lett 357:179–193

    Google Scholar 

  • Parlak O (2016) The tauride ophiolites of Anatolia (Turkey): a review. J Earth Sci 27(6):901–934

    Google Scholar 

  • Parlak O, Delaloye M (1999) Precise 40Ar/39Ar ages from the metamorphic sole of the Mersin ophiolite (southern Turkey). Tectonophysics 301(1–2):145–158

    Google Scholar 

  • Parlak O, HÖck V et al (2000) Suprasubduction zone origin of the Pozanti–Karsanti ophiolite (southern Turkey) deduced from whole-rock and mineral chemistry of the gabbroic cumulates. Geol Soc Lond Spec Publ 173(1):219–234

    Google Scholar 

  • Parlak O, Höck V et al (2002) The supra-subduction zone Pozanti–Karsanti ophiolite, southern Turkey: evidence for high-pressure crystal fractionation of ultramafic cumulates. Lithos 65(1):205–224

    Google Scholar 

  • Parlak O, Rızaoğlu T et al (2009) Tectonic significance of the geochemistry and petrology of ophiolites in southeast Anatolia, Turkey. Tectonophysics 473(1):173–187

    Google Scholar 

  • Pearson DG, Shirey SB et al (1999) Re-Os isotope measurements of single sulfide inclusions in a Siberian diamond and its nitrogen aggregation systematics. Geochim Cosmochim Acta 63(5):703–711

    Google Scholar 

  • Pearson DG, Brenker FE et al (2014) Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507(7491):221–224

    Google Scholar 

  • Peters KE, Sweeney RE et al (1978) Correlation of carbon and nitrogen stable isotope ratios in sedimentary organic matter. Limnol Oceanogr 23(4):598–604

    Google Scholar 

  • Polat A, Casey JF (1995) A structural record of the emplacement of the Pozanti–Karsanti ophiolite onto the Menderes-Taurus block in the late Cretaceous, eastern Taurides, Turkey. J Struct Geol 17(12):1673–1688

    Google Scholar 

  • Reagan MK, Pearce JA et al (2017) Subduction initiation and ophiolite crust: new insights from IODP drilling. Int Geol Rev 59(11):1439–1450

    Google Scholar 

  • Reutsky VN, Harte B et al (2008) Monitoring diamond crystal growth, a combined experimental and SIMS study. Eur J Mineral 20(3):365–374

    Google Scholar 

  • Reutsky VN, Kowalski PM et al (2017) Experimental and theoretical evidence for surface-induced carbon and nitrogen fractionation during diamond crystallization at high temperatures and high pressures. Crystals 7(7):1–14

    Google Scholar 

  • Richet P, Bottinga Y et al (1977) A review of hydrogen, carbon, nitrogen, oxygen, sulphur, and chlorine stable isotope fractionation among gaseous molecules. Annu Rev Earth Planet Sci 5(1):65–110

    Google Scholar 

  • Robertson AHF, Parlak O et al (2012) Overview of the Palaeozoic-Neogene evolution of Neotethys in the Eastern Mediterranean region (southern Turkey, Cyprus, Syria). Pet Geosci 18(18):381–404

    Google Scholar 

  • Robinson PT, Bai W et al (2004) Ultra-high pressure minerals in the Luobusa Ophiolite, Tibet, and their tectonic implications. Spec Publ Geol Soc Lond 226(1):247–272

    Google Scholar 

  • Robinson PT, Trumbull RB et al (2015) The origin and significance of crustal minerals in ophiolitic chromitites and peridotites. Gondwana Res 27(2):486–506

    Google Scholar 

  • Rohrbach A, Ballhaus C et al (2007) Metal saturation in the upper mantle. Nature 449(7161):456–458

    Google Scholar 

  • Rohrbach A, Ballhaus C et al (2011) Experimental evidence for a reduced metal-saturated upper mantle. J Petrol 52(4):717–731

    Google Scholar 

  • Ruskov T, Spirov I et al (2010) Mössbauer spectroscopy studies of the valence state of iron in chromite from the Luobusa massif of Tibet: implications for a highly reduced deep mantle. J Metamorph Geol 28(5):551–560

    Google Scholar 

  • Saka S, Uysal I et al (2014) The effects of partial melting, melt–mantle interaction and fractionation on ophiolite generation: constraints from the late Cretaceous Pozantı–Karsantı ophiolite, southern Turkey. Lithos 202(1):300–316

    Google Scholar 

  • Satsukawa T, Griffin WL et al (2015) Messengers from the deep: fossil wadsleyite-chromite microstructures from the mantle transition zone. Sci Rep 5:1–8

    Google Scholar 

  • Schertl H, Sobolev NV (2013) The Kokchetav Massif, Kazakhstan: “type locality” of diamond-bearing UHP metamorphic rocks. J Asian Earth Sci 63:5–38

    Google Scholar 

  • Schulze DJ, Harte B et al (2013) Anticorrelation between low δ13C of eclogitic diamonds and high δ18O of their coesite and garnet inclusions requires a subduction origin. Geology 41(4):455–458

    Google Scholar 

  • Shannon RT (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A Cryst Phys Diffract Theor Gen Crystallogr 32(5):751–767

    Google Scholar 

  • Shatsky VS, Zedgenizov DA et al (2014) Carbon isotopes and nitrogen contents in placer diamonds from the NE Siberian craton: implications for diamond origins. Eur J Mineral 26(1):41–52

    Google Scholar 

  • Shim SH, Duffy TS et al (2000) The stability and P–V–T equation of state of CaSiO3 perovskite in the Earth’s lower mantle. J Geophys Res Solid Earth 105(B11):25955–25968

    Google Scholar 

  • Shirey SB, Cartigny P et al (2013) Diamonds and the geology of mantle carbon. Rev Mineral Geochem 75(1):355–421

    Google Scholar 

  • Smith EM, Kopylova MG (2014) Implications of metallic iron for diamonds and nitrogen in the sublithospheric mantle. Can J Earth Sci 51(5):510–516

    Google Scholar 

  • Stachel T, Harris JW (2008) The origin of cratonic diamonds—constraints from mineral inclusions. Ore Geol Rev 34(1):5–32

    Google Scholar 

  • Stachel T, Harris JW (2009) Formation of diamond in the Earth’s mantle. J Phys Condens Matter 21(36):1–10

    Google Scholar 

  • Stachel T, Luth RW (2015) Diamond formation—where, when and how?. Lithos 220:200–220

    Google Scholar 

  • Stachel T, Harris JW et al (2000) Kankan diamonds (Guinea) II: lower mantle inclusion parageneses. Contrib Mineral Petrol 140(1):16–27

    Google Scholar 

  • Stachel T, Brey GP et al (2005) Inclusions in sublithospheric diamonds: glimpses of deep. Earth Elements 1(2):73–78

    Google Scholar 

  • Stagno V, Frost DJ et al (2015) The oxygen fugacity at which graphite or diamond forms from carbonate-bearing melts in eclogitic rocks. Contrib Mineral Petrol 169(2):1–18

    Google Scholar 

  • Stern RJ, Reagan M et al (2012) To understand subduction initiation, study forearc crust: to understand forearc crust, study ophiolites. Lithosphere 4(6):469–483

    Google Scholar 

  • Sunagawa I (1990) Growth and morphology of diamond crystals under stable and metastable conditions. J Cryst Growth 99(1–4):1156–1161

    Google Scholar 

  • Tappert R (2006) Placer diamonds from Brazil: indicators of the composition of the earth’s mantle and the distance to their kimberlitic sources. Econ Geol 101(2):453–470

    Google Scholar 

  • Tappert R, Stachel T et al (2005) Subducting oceanic crust: the source of deep diamonds. Geology 33(7):565–568

    Google Scholar 

  • Thomassot E, Cartigny P et al (2007) Methane-related diamond crystallization in the Earth’s mantle: stable isotope evidences from a single diamond-bearing xenolith. Earth Planet Sci Lett 257(3):362–371

    Google Scholar 

  • Tian Y, Yang J et al (2015) Diamond discovered in high-Al chromitites of the sartohay ophiolite, Xinjiang Province, China. Acta Geol Sin 89(2):332–340

    Google Scholar 

  • Tschauner O, Huang S et al (2018) Ice-VII inclusions in diamonds: evidence for aqueous fluid in Earth’s deep mantle. Science 359(6380):1136–1139

    Google Scholar 

  • Walter MJ, Kohn SC et al (2011) Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions. Science 334(6052):54–57

    Google Scholar 

  • Welbourn CM, Rooney MT et al (1989) A study of diamonds of cube and cube-related shape from the Jwaneng mine. J Cryst Growth 94(1):229–252

    Google Scholar 

  • Whattam SA, Stern RJ (2011) The ‘subduction initiation rule’: a key for linking ophiolites, intra-oceanic forearcs, and subduction initiation. Contrib Mineral Petrol 162(5):1031–1045

    Google Scholar 

  • Wirth R (2004) Focused Ion Beam (FIB). Eur J Mineral 16(6):863–876

    Google Scholar 

  • Wu Y, Xu M et al (2016) Experimental constraints on the formation of the Tibetan podiform chromitites. Lithos 245(15):109–117

    Google Scholar 

  • Wu W, Yang J et al (2017) Discovery and significance of diamonds and moissanites in chromitite within the skenderbeu massif of the mirdita zone ophiolite, West Albania. Acta Geol Sin (English Edition) 91(3):882–897

    Google Scholar 

  • Xiong F, Yang J et al (2016) Diamonds and other exotic minerals recovered from peridotites of the dangqiong ophiolite, western Yarlung-Zangbo Suture Zone, Tibet. Acta Geol Sin (English Edition) 90(2):425–439

    Google Scholar 

  • Xu X, Yang J et al (2009) Unusual mantle mineral group from chromitite orebody Cr-11 in Luobusa ophiolite of Yarlung-Zangbo suture zone, Tibet. J Earth Sci 20(2):284–302

    Google Scholar 

  • Xu X, Yang J et al (2015) Origin of ultrahigh pressure and highly reduced minerals in podiform chromitites and associated mantle peridotites of the Luobusa ophiolite, Tibet. Gondwana Res 27(2):686–700

    Google Scholar 

  • Xu X, Cartigny P et al (2017) Fourier transform infrared spectroscopy data and carbon isotope characteristics of the ophiolite-hosted diamonds from the Luobusa ophiolite, Tibet, and Ray-Iz ophiolite, polar urals. Lithosphere 10(1):156–169

    Google Scholar 

  • Yamamoto S, Komiya T et al (2009) Coesite and clinopyroxene exsolution lamellae in chromites: in-situ ultrahigh-pressure evidence from podiform chromitites in the Luobusa ophiolite, southern Tibet. Lithos 109(3):314–322

    Google Scholar 

  • Yang J, Xu Z et al (2003) Discovery of metamorphic diamonds in central China: an indication of a> 4000-km-long zone of deep subduction resulting from multiple continental collisions. Terra Nova 15(6):370–379

    Google Scholar 

  • Yang J, Dobrzhinetskaya L et al (2007) Diamond-and coesite-bearing chromitites from the Luobusa ophiolite, Tibet. Geology 35(10):875–878

    Google Scholar 

  • Yang J, Robinson PT et al (2014) Diamonds in ophiolites. Elements 10(2):127–130

    Google Scholar 

  • Yang J, Meng F et al (2015a) Diamonds, native elements and metal alloys from chromitites of the Ray-Iz ophiolite of the Polar Urals. Gondwana Res 27(2):459–485

    Google Scholar 

  • Yang J, Robinson PT et al (2015b) Diamond-bearing ophiolites and their geological occurrence. Episodes 38(4):344–364

    Google Scholar 

  • Zedgenizov DA, Harte B (2004) Microscale variations of δ13C and N content within a natural diamond with mixed-habit growth. Chem Geol 205(1):169–175

    Google Scholar 

  • Zedgenizov DA, Kagi H et al (2014) Local variations of carbon isotope composition in diamonds from São-Luis (Brazil): evidence for heterogenous carbon reservoir in sublithospheric mantle. Chem Geol 363:114–124

    Google Scholar 

  • Zedgenizov DA, Ragozin AL et al (2016) The mineralogy of Ca-rich inclusions in sublithospheric diamonds. Geochem Int 54(10):890–900

    Google Scholar 

  • Zedgenizov D, Reutsky V et al (2017) The Carbon and nitrogen isotope characteristics of type Ib-IaA Cuboid diamonds from alluvial placers in the northeastern Siberian platform. Minerals 7(10):1–9

    Google Scholar 

  • Zhang RY, Yang JS et al (2016) Discovery of in situ super-reducing, ultrahigh-pressure phases in the Luobusa ophiolitic chromitites, Tibet: new insights into the deep upper mantle and mantle transition zone. Am Mineral 101(6):1285–1294

    Google Scholar 

  • Zhang Y, Jin Z et al (2017) High-pressure experiments provide insights into the Mantle Transition Zone history of chromitite in Tibetan ophiolites. Earth Planet Sci Lett 463:151–158

    Google Scholar 

  • Zhou M, Robinson PT et al (2014) Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: the role of slab contamination of asthenospheric melts in suprasubduction zone environments. Gondwana Res 26(1):262–283

    Google Scholar 

Download references

Acknowledgements

We thank Fahui Xiong, Wenda Zhou and Prof. Ibrahim Uysal for assistance in the field work, Bin Shi for the assistance in CL imaging. Frédéric Couffignal conducted the SIMS analyses, Anja Schreiber cut the TEM foils of the diamonds, and Richard Wirth conducted TEM analyses. We appreciate their help very much. We would also like to thank Pengfei Zhang, Fei Liu, Paul T. Robinson and Vadim N. Reutsky for their valuable suggestions. We thank the editor and three anonymous reviewers for their thorough and valuable comments that improved this manuscript. This research was supported by the funded by Fundamental Research Funds for the Central Universities (020614380069, 020614380072), the Ministry of Science and Technology of China (2014DFR21270, 201511022, J1618), the National Science Foundation of China (Grants 41672063, 41773029, 41373029,), the China Geological Survey (DD20160023-01, DD20160022-01), and the IGCP-649 project. Y Dilek acknowledges the financial support for this project provided to him by a Lishiguang Scholarship through the Geological Survey of China and the Chinese Academy of Geological Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongyang Lian.

Additional information

Communicated by Jochen Hoefs.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lian, D., Yang, J., Wiedenbeck, M. et al. Carbon and nitrogen isotope, and mineral inclusion studies on the diamonds from the Pozanti–Karsanti chromitite, Turkey. Contrib Mineral Petrol 173, 72 (2018). https://doi.org/10.1007/s00410-018-1499-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-018-1499-5

Keywords

Navigation