Skip to main content

Advertisement

Log in

High temperature gas–solid reactions in calc–silicate Cu–Au skarn formation; Ertsberg, Papua Province, Indonesia

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The 2.7–3 Ma Ertsberg East Skarn System (Indonesia), adjacent to the giant Grasberg Porphyry Copper deposit, is part of the world’s largest system of CuAu skarn deposits. Published fluid inclusion and stable isotope data show that it formed through the flux of magma-derived fluid through contact metamorphosed carbonate rock sequences at temperatures well above 600° C and pressures of less than 50 MPa. Under these conditions, the fluid has very low density and the properties of a gas. Combining a range of micro-analytical techniques, high-resolution QEMSCAN mineral mapping and computer-assisted X-ray micro-tomography, an array of coupled gas–solid reactions may be identified that controlled reactive mass transfer through the ~ 1 km3 hydrothermal skarn system. Vacancy-driven mineral chemisorption reactions are identified as a new type of reactive transport process for high-temperature skarn alteration. These gas–solid reactions are maintained by the interaction of unsatisfied bonds on mineral surfaces and dipolar gas-phase reactants such as SO2 and HCl that are continuously supplied through open fractures and intergranular diffusion. Principal reactions are (a) incongruent dissolution of almandine-grossular to andradite and anorthite (an alteration mineral not previously recognized at Ertsberg), and (b) sulfation of anorthite to anhydrite. These sulfation reactions also generate reduced sulfur with consequent co-deposition of metal sulfides. Diopside undergoes similar reactions with deposition of Fe-enriched pyroxene in crypto-veins and vein selvedges. The loss of calcium from contact metamorphic garnet to form vein anhydrite necessarily results in Fe-enrichment of wallrock, and does not require Fe-addition from a vein fluid as is commonly assumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Redrawn from Leys et al. (2012)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Africano F, Bernard A, Korzhinsky M (2003) High temperature volcanic gas geochemistry (major and minor elements) at Kudryavy volcano, Iturup Island, Kuril Arc, Russia. Rev Port Volcanol 1:87–94

    Google Scholar 

  • Ague JJ, Carlson WD (2013) Metamorphism as garnet sees it: the kinetics of nucleation and growth, equilibration, and diffusional relaxation. Elements 9:439–445

    Article  Google Scholar 

  • Ayris PM, Lee AF, Wilson K, Kueppers U, Dingwell DB, Delmelle P (2013) SO < sub > 2 </sub > sequestration in large volcanic eruptions: high-temperature scavenging by tephra. Geochim Cosmochim Acta 110:58–69

    Article  Google Scholar 

  • Ayris PM, Delmelle P, Cimarelli C, Maters EC, Suzuki YJ, Dingwell DB (2014) HCl uptake by volcanic ash in the high temperature eruption plume: mechanistic insights. Geochim Cosmochim Acta 144:188–201

    Article  Google Scholar 

  • Babuška V, Fiala J, Kumazawa M, Ohno I, Sumino Y (1978) Elastic properties of garnet solid-solution series. Phys Earth Planet Inter 16:157–176

    Article  Google Scholar 

  • Baline LM (2007) Hydrothermal fluids and CuAu mineralization of the deep grasberg porphyry deposit. University of texas, Austin, p 287

    Google Scholar 

  • Barnes H, Helgeson H, Ellis A (1966) Ionization constants in aqueous solutions. Handb Phys Constants 97:401–413

    Article  Google Scholar 

  • Blount C, Dickson F (1969) The solubility of anhydrite (CaSO4) in NaCl–H2O from 100 to 450 C and 1 to 1000 bars. Geochim Cosmochim Acta 33:227–245

    Article  Google Scholar 

  • Burgisser A, Scaillet B (2007) Redox evolution of a degassing magma rising to the surface. Nature 445:194–197

    Article  Google Scholar 

  • Burnham CW, Davis N (1974) The role of H2O in silicate melts; II, thermodynamic and phase relations in the system NaAlSi 3O8-H2O to 10 kilobars, 700 degrees to 1100 degrees C. Am J Sci 274:902–940

    Article  Google Scholar 

  • Cloos M, Sapiie B (2013) Porphyry copper deposits: strike–slip faulting and throttling cupolas. Int Geol Rev 55:43–65

    Article  Google Scholar 

  • Cox S (2010) The application of failure mode diagrams for exploring the roles of fluid pressure and stress states in controlling styles of fracture-controlled permeability enhancement in faults and shear zones. Geofluids 10:217–233

    Google Scholar 

  • Delmelle P, Henley RW, Opfergelt S, Detienne M (2015) Summit acid crater lakes and flank instability in composite volcanoes. In: Rouwet D, Christenson B, Tassi F, Vandemeulebrouck J (eds) Volcanic lakes. Springer, New York, pp 289–305

    Google Scholar 

  • Einaudi MT, Burt DM (1982) Introduction; terminology, classification, and composition of skarn deposits. Econ Geol 77:745–754

    Article  Google Scholar 

  • Fegley B, Prinn RG (1989) Estimation of the rate of volcanism on Venus from reaction rate measurements. Nature 337:55–58

    Article  Google Scholar 

  • Floess D, Baumgartner LP (2015) Constraining magmatic fluxes through thermal modelling of contact metamorphism. Geol Soc Lond Spec Publ 422:41–56

    Article  Google Scholar 

  • Gandler L (2006) Calc–silicate alteration and CuAu mineralization of the deep MLZ skarn. Ertsberg District, Papua, Indonesia: MS thesis, University of Texas at Austin

  • Gibbins SL (2006) The magmatic and hydrothermal evolution of the Ertsberg intrusion in the Gunung Bijih (Ertsberg) Mining District, West Papua, Indonesia. University of Arizona, Tucson, p 384

    Google Scholar 

  • Giggenbach WF (1987) Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Appl Geochem 2:143–161

    Article  Google Scholar 

  • Harlov DE, Austrheim H (2013) Metasomatism and the chemical transformation of rock: rock-mineral-fluid interaction in terrestrial and extraterrestrial environments. In: Metasomatism and the chemical transformation of rock. Springer, Berlin, Heidelberg, pp 1–16

  • Harrison JS (1999) Hydrothermal alteration and fluid evolution of the Grasberg porphyry CuAu deposit, Irian Jaya, Indonesia. University of Texas, Austin, p 226

    Google Scholar 

  • Henley RW, Berger BR (2000) Self-ordering and complexity in epizonal mineral deposits. Annu Rev Earth Planet Sci 28:669–719

    Article  Google Scholar 

  • Henley RW, Berger BR (2013) Nature’s refineries—metals and metalloids in arc volcanoes. Earth Sci Rev 125:146–170

    Article  Google Scholar 

  • Henley RW, Hughes GO (2016) SO2 flux and the thermal power of volcanic eruptions. J Volcanol Geother Res 324:190–199

    Article  Google Scholar 

  • Henley RW, McNabb A (1978) Magmatic vapor plumes and ground-water interaction in porphyry copper emplacement. Econ Geol 73:1–20

    Article  Google Scholar 

  • Henley RW, King PL, Wykes JL, Renggli CJ, Brink FJ, Clark DA, Troitzsch U (2015) Porphyry copper deposit formation by sub-volcanic sulphur dioxide flux and chemisorption. Nat Geosci 8:210–215

    Article  Google Scholar 

  • Holtz F, Becker A, Freise M, Johannes W (2001a) The water-undersaturated and dry Qz–Ab–Or system revisited. Experimental results at very low water activities and geological implications. Contrib Miner Petrol 141:347–357

    Article  Google Scholar 

  • Holtz F, Johannes W, Tamic N, Behrens H (2001b) Maximum and minimum water contents of granitic melts generated in the crust: a reevaluation and implications. Lithos 56:1–14

    Article  Google Scholar 

  • Kingston A, Sakellariou A, Varslot T, Myers G, Sheppard A (2011) Reliable automatic alignment of tomographic projection data by passive auto-focus. Med Phys 38:4934–4945

    Article  Google Scholar 

  • Kyle JR, Gandler L, Mertig H, Rubin J, Ledvina M (2014) Stratigraphic inheritance controls of skarn-hosted metal concentrations: ore controls for Ertsberg-Grasberg District CuAu skarns, Papua, Indonesia. Acta Geol Sin (Engl Edn) 88:529–531

    Article  Google Scholar 

  • Lemke KH, Seward TM (2008a) Ab initio investigation of the structure, stability, and atmospheric distribution of molecular clusters containing H2O, CO2, and N2O. J Geophys Res Atmos 72:113

    Google Scholar 

  • Lemke KH, Seward TM (2008b) Solvation processes in steam: Ab initio calculations of ion–solvent structures and clustering equilibria. Geochim Cosmochim Acta 72:3293–3310

    Article  Google Scholar 

  • Leys CA, Cloos M, New BT, MacDonald GD (2012) Copper-gold ± molybdenum deposits of the Ertsberg-Grasberg District, Papua, Indonesia. Soc Econ Geol Spec Publ 16:215–235

    Google Scholar 

  • Locock AJ (2008) An Excel spreadsheet to recast analyses of garnet into end-member components, and a synopsis of the crystal chemistry of natural silicate garnets. Comput Geosci 34:1769–1780

    Article  Google Scholar 

  • MacDonald GD, Arnold LC (1994) Geological and geochemical zoning of the Grasberg igneous complex, Irian Jaya, Indonesia. J Geochem Explor 50:143–178

    Article  Google Scholar 

  • Meinert LD, Hefton KK, Mayes D, Tasiran I (1997) Geology, zonation, and fluid evolution of the Big Gossan CuAu skarn deposit, Ertsberg District, Irian Jaya. Econ Geol 92:509–534

    Article  Google Scholar 

  • Meinert L, Hedenquist J, Satoh H, Matsuhisa Y (2003) Formation of anhydrous and hydrous skarn in CuAu ore deposits by magmatic fluids. Econ Geol 98:147–156

    Article  Google Scholar 

  • Meinert LD, Dipple GM, Nicolescu S (2005) World skarn deposits. Econ Geol 100th Anniv Vol 299–336

  • Mertig HJ (1995) Geology and ore formation of the dom copper skarn deposit, Ertsberg (Gunung Bijih) District, Irian Jaya, Indonesia. MA thesis, University of Texas at Austin, Austin, Texas

  • Mertig HJ, Rubin JN, Kyle JR (1994) Skarn Cu□ Au orebodies of the Gunung Bijih (Ertsberg) district, Irian Jaya, Indonesia. J Geochem Explor 50:179–202

    Article  Google Scholar 

  • Paterson JT, Cloos M (2005) Grasberg porphyry Cu–Au deposit, Papua, Indonesia: 1. Magmatic history. PGC Publishing, South Australia

    Google Scholar 

  • Pollard PJ, Taylor RG (2002) Paragenesis of the Grasberg Cu–Au deposit, Irian Jaya, Indonesia: results from logging section 13. Miner Deposita 37:117–136

    Article  Google Scholar 

  • Roedder E (1984) Fluid inclusions. Mineralogical Society of America, Chelsea

    Google Scholar 

  • Roine A (2006) HSC Chemistry® 6.0 User’s Guide. Outotec Research Oy, Pori, Finland

  • Rubin JN, Kyle JR (1998) The Gunung Bijih Timur (Ertsberg east) skarn complex, Irian Jaya, Indonesia: geology and genesis of a large, magnesian, CuAu skarn. Mineralized intrusion-related skarn systems. Mineral Ass Canada Short Course Ser 26:289–337

    Google Scholar 

  • Sapiie B, Cloos M (2013) Strike–slip faulting and veining in the Grasberg giant porphyry Cu–Au deposit, Ertsberg (Gunung Bijih) mining district, Papua, Indonesia. Int Geol Rev 55:1–42

    Article  Google Scholar 

  • Sheppard AP, Sok RM, Averdunk H (2004) Techniques for image enhancement and segmentation of tomographic images of porous materials. Phys A 339:145–151

    Article  Google Scholar 

  • Sheppard A, Latham S, Middleton J, Kingston A, Myers G, Varslot T, Fogden A, Sawkins T, Cruikshank R, Saadatfar M (2014) Techniques in helical scanning, dynamic imaging and image segmentation for improved quantitative analysis with X-ray micro-CT. Nucl Instrum Methods Phys Res Sect B 324:49–56

    Article  Google Scholar 

  • Sillitoe RH (2005) Supergene oxidized and enriched porphyry copper and related deposits, economic geology one hundredth anniversary volume. Soc Econ Geol 724–768

  • Smyth JR (1980) Cation vacancies and the crystal chemistry of breakdown reactions in kimberlitic omphacites. Am Miner 65:1185–1191

    Google Scholar 

  • Somorjai GA (2000) Surface chemistry. In: Hall N (ed) The new chemistry. Cambridge University Press, Cambridge, pp 137–167

    Google Scholar 

  • Szekely J, Evans J, Sohn H (1976) Gas-solid reactions. Academic Press, New York

    Google Scholar 

  • Taran Y, Zelenski M (2015) Systematics of water isotopic composition and chlorine content in arc-volcanic gases. Geol Soc Lond Spec Publ 410:237–262

    Article  Google Scholar 

  • Varslot T, Kingston A, Myers G, Sheppard A (2011) High-resolution helical cone-beam micro-CT with theoretically-exact reconstruction from experimental data. Med Phys 38:5459–5476

    Article  Google Scholar 

  • Wahrenberger C, Seward T, Dietrich V (2002) Volatile trace-element transport in high-temperature gases from Kudriavy volcano (Iturup, Kurile Islands, Russia). Geochem Soc Spec Publ 7:307–327

    Google Scholar 

  • Weatherley DK, Henley RW (2013) Flash vaporization during earthquakes evidenced by gold deposits. Nat Geosci 6:294–298

    Article  Google Scholar 

  • Weiland RJ, Cloos M (1996) Pliocene-Pleistocene asymmetric unroofing of the Irian fold belt, Irian Jaya, Indonesia: apatite fission-track thermochronology. Geol Soc Am Bull 108:1438–1449

    Article  Google Scholar 

  • Zhang J, Zhou K, Velho L, Guo B, Shum H-Y (2003) Synthesis of progressively-variant textures on arbitrary surfaces, ACM Transactions on Graphics (TOG). ACM, pp 295–302

  • Zhao C, Hobbs B, Mühlhaus H, Ord A, Lin G (2000) Numerical modelling of double diffusion driven reactive flow transport in deformable fluid-saturated porous media with particular consideration of temperature-dependent chemical reaction rates. Eng Comput 17:367–385

    Article  Google Scholar 

Download references

Acknowledgements

We first wish to acknowledge the series of PhD and MSc studies undertaken at the University of Texas. It is their clarity and attention to detail that have provided the basis from which we are able to explore the complexity of the high temperature reactions between magmatic vapor and carbonate sequence rocks at Ertsberg. We thank Dave Clark, A. J. Limaye, Levi Beeching, Erica Seccombe and Adrian Sheppard for assistance with the experiments and the X-ray μCT imagery. We also thank the two reviewers of the earlier draft of this paper for helpful comment. This study was supported by Australian Research Council funding to King (DP150104604 and FT130101524).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard W. Henley.

Additional information

Communicated by Timothy L. Grove.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 340 kb)

Supplementary material 2 (XLSX 97 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henley, R.W., Brink, F.J., King, P.L. et al. High temperature gas–solid reactions in calc–silicate Cu–Au skarn formation; Ertsberg, Papua Province, Indonesia. Contrib Mineral Petrol 172, 106 (2017). https://doi.org/10.1007/s00410-017-1413-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-017-1413-6

Keywords

Navigation