Skip to main content
Log in

Timescales of mixing and storage for Keanakāko‘i Tephra magmas (1500–1820 C.E.), Kīlauea Volcano, Hawai‘i

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The last 2500 years of activity at Kīlauea Volcano (Hawai‘i) have been characterized by centuries-long periods dominated by either effusive or explosive eruptions. The most recent period of explosive activity produced the Keanakāko‘i Tephra (KT; ca. 1500–1820 C.E.) and occurred after the collapse of the summit caldera (1470–1510 C.E.). Previous studies suggest that KT magmas may have ascended rapidly to the surface, bypassing storage in crustal reservoirs. The storage conditions and rapid ascent hypothesis are tested here using chemical zoning in olivine crystals and thermodynamic modeling. Forsterite contents (Fo; [Mg/(Mg + Fe) × 100]) of olivine core and rim populations are used to identify melt components in Kīlauea’s prehistoric (i.e., pre-1823) plumbing system. Primitive (≥Fo88) cores occur throughout the 300+ years of the KT period; they originated from mantle-derived magmas that were first mixed and stored in a deep crustal reservoir. Bimodal olivine populations (≥Fo88 and Fo83–84) record repeated mixing of primitive magmas and more differentiated reservoir components shallower in the system, producing a hybrid composition (Fo85–87). Phase equilibria modeling using MELTS shows that liquidus olivine is not stable at depths >17 km. Thus, calculated timescales likely record mixing and storage within the crust. Modeling of Fe–Mg and Ni zoning patterns (normal, reverse, complex) reveal that KT magmas were mixed and stored for a few weeks to several years before eruption, illustrating a more complex storage history than direct and rapid ascent from the mantle as previously inferred for KT magmas. Complexly zoned crystals also have smoothed compositional reversals in the outer 5–20 µm rims that are out of Fe–Mg equilibrium with surrounding glasses. Diffusion models suggest that these rims formed within a few hours to a few days, indicating that at least one additional, late-stage mixing event may have occurred shortly prior to eruption. Our study illustrates that the lifetimes of KT magmas are more complex than previously proposed, and that most KT magmas did not rise rapidly from the mantle without modification during shallow crustal storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Albert H, Costa F, Marti J (2015) Timing of magmatic processes and unrest associated with mafic historical monogenetic eruptions in Tenerife Island. J Petrol 56(10):1945–1966. doi:10.1093/petrology/egv058

    Article  Google Scholar 

  • Armstrong JT (1988) Quantitative analyses of silicate and oxide materials: comparison of Monte Carlo, ZAF, and φ(ρz) procedures. Microbeam analyses. San Francisco Press, San Francisco, pp 239–246

    Google Scholar 

  • Cardozo N, Allmendinger RW (2013) Spherical projections with OSXStereonet. Comput Geosci 51:193–205. doi:10.1016/j.cageo/2012.07.021

    Article  Google Scholar 

  • Cayol V, Dieterich JH, Okamura AT, Miklius A (2000) High magma storage rates before the 1983 eruption of Kilauea, Hawaii. Science 288(5475):2343–2346. doi:10.1126/science.288.5475.2343

    Article  Google Scholar 

  • Cervelli PF, Miklius A (2003) The shallow magmatic system of Kīlauea volcano. In: Heliker C, Swanson DA, Takahashi TJ (eds) The Pu‘u ‘Ō‘ō-Kūpianaha eruption of Kīlauea Volcano, Hawai‘i; the first 20 years. US Geological Survey, Washington, DC, pp 149–163

  • Chakraborty S (2010) Diffusion coefficients in olivine, wadsleyite and ringwoodite. Rev Miner Geochem 72:603–639

    Article  Google Scholar 

  • Clague DA, Denlinger RP (1994) Role of olivine cumulates in destabilizing the flanks of Hawaiian volcanoes. Bull Volc 56:425–434

    Article  Google Scholar 

  • Clague D, Moore JG, Dixon JE, Friesen WB (1995) Petrology of submarine lavas from Kilauea’s Puna Ridge, Hawaii. J Petrol 36(2):299–349. doi:10.1093/petrology/36.2.299

    Article  Google Scholar 

  • Corbi F, Rivalta E, Pinel V, Maccaferri F, Bagnardi M, Acocella V (2015) How caldera collapse shapes the shallow emplacement and transfer of magma in active volcanoes. Earth Planet Sci Lett 431:287–293. doi:10.1016/j.epsl.2015.09.028

    Article  Google Scholar 

  • Costa F, Chakraborty S (2004) Decadal time gaps between mafic intrusion and silicic eruption obtained from chemical zoning patterns in olivine. Earth Planet Sci Lett 224:517–530. doi:10.1016/j.epsl/2004.08.011

    Article  Google Scholar 

  • Costa F, Dungan M (2005) Short time scales of magmatic assimilation from diffusion modeling of multiple elements in olivine. Geology 33(10):837–840. doi:10.1130/G21675.1

    Article  Google Scholar 

  • Costa F, Dohmen R, Chakraborty S (2008) Time scales of magmatic processes from modeling the zoning patterns of crystals. Rev Miner Geochem 69(1):545–594. doi:10.2138/rmg.2008.69.14

    Article  Google Scholar 

  • Davis FA, Cottrell E, Birner SK, Warren J, Lopez OG (2017) Revisiting the electron microprobe method of spinel-olivine-orthopyroxene oxybarometry applied to spinel peridotites. Am Mineral 102:421–435. doi:10.2138/am-2017-5823

    Article  Google Scholar 

  • Denlinger RP (1997) A dynamic balance between magma supply and eruption rate at Kilauea volcano, Hawaii. J Geophys Res 102(B8):18091–18100. doi:10.1029/97JB01071

    Article  Google Scholar 

  • Dohmen R, Chakraborty S (2007a) Fe-Mg diffusion in olivine II: point defect chemistry, change of diffusion mechanisms and a model for calculation of diffusion coefficients in natural olivine. Phys Chem Miner 34(6):409–430. doi:10.1007/s00269-007-0158-6

    Article  Google Scholar 

  • Dohmen R, Chakraborty S (2007b) Erratum on “Fe–Mg diffusion in olivine II: point defect chemistry, change of diffusion mechanisms and a model for calculation of diffusion coefficients in natural olivine”. Phys Chem Miner 34:597–598. doi:10.1007/s00269-007-0185-3

    Article  Google Scholar 

  • Donovan JJ, Tingle TN (1996) An improved mean atomic number correction for quantitative microanalysis. J Microsc 2(1):1–7. doi:10.1017/S1431927696210013

    Google Scholar 

  • Easton RM (1987) Stratigraphy of Kilauea Volcano. In: Decker RW, Wright TL, Stauffer PH (eds) Volcanism in Hawaii. US Geological Survey, Washington, DC, pp 243–260

  • Easton RM, Garcia MO (1980) Petrology of the Hilina Formation, Kilauea Volcano, Hawaii. Bull Volcanol 43(4):657–673. doi:10.1007/BF02600364

    Article  Google Scholar 

  • Eggins SM (1991) Petrogenesis of Hawaiian tholeiites: 1, phase equilibria constraints. Contrib Miner Petrol 110:387–397. doi:10.1007/BF00310752

    Article  Google Scholar 

  • Ellis W (1827) Narrative of a tour through Hawaii, or, Owyhee; with observations on the natural history of the Sandwich Islands, and remarks on the manners, customs, traditions, history, and language of their inhabitants, 2nd edn. H. Fisher, Son, and P. Jackson, London, p 515

    Google Scholar 

  • Garcia MO (2015) How and why Hawaiian volcanism has become pivotal to our understanding of volcanoes from their source to the surface. In: Carey R, Cayol V, Poland M, Weis D (eds) Hawaiian volcanoes: from source to surface. American Geophysical Union, Washington, DC, pp 1–18. doi:10.1002/9781118872079.ch1

  • Gavrilenko M, Ozerov A, Kyle PR, Carr MJ, Nikulin A, Vidito C, Danyushevsky L (2016) Abrupt transition from fractional crystallization to magma mixing at Gorely volcano (Kamchatka) after caldera collapse. Bull Volcanol 78:1–47. doi:10.1007/s00445-016-1038-z

    Article  Google Scholar 

  • Ghiorso MS, Gualda GAR (2015) An H2O-CO2 mixed fluid saturation model compatible with rhyolite-MELTS. Cont Min Petrol 169(53):1–30. doi:10.1007/s00410-015-1141-8

    Google Scholar 

  • Girona T, Costa F (2013) DIPRA: a user-friendly program to model multi-element diffusion in olivine with applications to timescales of magmatic processes. Geochem Geophys Geosys 14(2):422–431. doi:10.1029/2012GC004427

    Article  Google Scholar 

  • Gualda GAR, Ghiorso MS, Lemons RV, Carley T (2012) Rhyolite-MELTS: a modified calibration of MELTS optimized for silica-rich, fluid bearing magmatic systems. J Petrol 53(5):875–890. doi:10.1093/petrology/egr080

    Article  Google Scholar 

  • Hartley ME, Morgan DJ, Maclennan J, Edmonds M, Thordarson T (2016) Tracking timescales of short-term precursors to large basaltic fissure eruptions through Fe-Mg diffusion in olivine. Earth Planet Sci Lett 439:58–70. doi:10.1016/j.epsl/2016.01.018

    Article  Google Scholar 

  • Helz RT (1987) Diverse olivine types in lava of the 1959 eruption of Kilauea Volcano and their bearing on eruption dynamics. In: Decker RW, Wright TL, Stauffer PH (eds) Volcanism in Hawaii. US Geological Survey, Washington, DC, pp 691–722

  • Helz RT, Thornber CR (1987) Geothermometry of Kilauea Iki lava lake, Hawaii. Bull Volcanol 49(5):651–668. doi:10.1007/BF01080357

    Article  Google Scholar 

  • Helz RT, Clague DA, Mastin LG, Rose TR (2014) Electron microprobe analyses of glasses from Kīlauea tephra units, Kīlauea Volcano, Hawaii. US Geol Surv Open File Rep 2014–1090:24. doi:10.3133/ofr20141090

    Google Scholar 

  • Helz RT, Clague DA, Mastin LG, Rose TR (2015) Evidence for large compositions ranges in coeval melts erupted from Kīlauea’s summit reservoir. In: Carey R, Cayol V, Poland M, Weis D (eds) Hawaiian volcanoes: from source to surface. American Geophysical Union, Washington, DC, pp 125–145. doi:10.1002/9781118872079.ch7

  • Helz RT, Cottrell E, Brounce MN, Kelley KA (2017) Olivine-melt relationships and syneruptive redox variations in the 1959 eruption of Kīlauea Volcano as revealed by XANES. J Volc Geotherm Res 333-334:1-14. doi:10.1016/j.jvolgeores.2012.12.006

    Google Scholar 

  • Hill DP, Zucca JJ (1987) Geophysical constraints on the structure of Kilauea and Mauna Loa volcanoes and some implications for seismomagmatic processes. In: Decker RW, Wright TL, Stauffer PH (eds) Volcanism in Hawaii. US Geological Survey, Washington, DC, pp 903–917

  • Jarosewich E, Nelen JA, Norberg JA (1980) Reference samples for electron microprobe analysis. Geos News 4(1):43–47. doi:10.1111/j.1751-908X.1980.tb00273.x

    Article  Google Scholar 

  • Kahl M, Chakraborty S, Costa F, Pompilio M (2011) Dynamic plumbing system beneath volcanoes revealed by kinetic modeling, and the connection to monitoring data: an example from Mt. Etna. Earth Planet Sci Lett 308(1–2):11–22. doi:10.1016/j.epsl.2011.05.008

    Article  Google Scholar 

  • Kahl M, Charaborty S, Costa F, Pompilio M, Luizzo M, Viccaro M (2013) Compositionally zoned crystals and real-time degassing data reveal changes in magma transfer dynamics during the 2006 summit eruptive episodes of Mt. Etna. Bull Volcanol 75:1–14

    Article  Google Scholar 

  • Kilburn CRJ (2015) Lava flow hazards and modeling. In: Sigurdsson H, Houghton B, McNutt SR, Rymer H, Stix J (eds) The encyclopedia of volcanoes. The Academic Press, San Diego, pp 957–934

  • Lin G, Amelung F, Lavallée Y, Okubo PG (2014) Seismic evidence for a crustal magma reservoir beneath the upper east rift zone of Kilauea volcano, Hawaii. Geology 42(3):187–190. doi:10.1130/G35001.1

    Article  Google Scholar 

  • Mastin LG (1997) Evidence for water influx from a caldera lake during the explosive hydromagmatic eruption of 1790, Kilauea Volcano, Hawaii. J Geophys Res 102(B9):20093–20109. doi:10.1029/97JB01426

    Article  Google Scholar 

  • Mastin LG, Christiansen RL, Thornber C, Lowenstern J, Beeson M (2004) What makes hydromagmatic eruptions violent? Some insights from the Keanakāko‘i Ash, Kīlauea Volcano, Hawai‘i. J Volcanol Geotherm Res 137(1–3):15–31. doi:10.1016/j.jvolgeores.2004.05.015

    Article  Google Scholar 

  • Matzen AK, Baker MB, Beckett JR, Stolper EM (2011) Fe–Mg partitioning between olivine and high-magnesian melts and the nature of Hawaiian parental liquids. J Petrol 52:1243–1263. doi:10.1093/petrology/egq089

    Article  Google Scholar 

  • May M, Carey RJ, Swanson DA, Houghton BF (2015) Reticulite-producing fountains from ring fractures in Kīlauea Caldera ca. 1500 CE. In: Carey R, Cayol V, Poland M, Weis D (eds) Hawaiian volcanoes: from source to surface. American Geophysical Union, Washington, DC, pp 351–367. doi:10.1002/9781118872079.ch16

  • McPhie J, Walker JP, Christiansen RL (1990) Phreatomagmatic and phreatic fall and surge deposits from explosions at Kilauea volcano, Hawaii, 1790 A.D.: Keanakakoi Ash Member. Bull Volcanol 52(5):334–354. doi:10.1007/BF00302047

    Article  Google Scholar 

  • Montgomery-Brown EK, Poland MP, Miklius A (2015) Delicate balance of magmatic-tectonic interaction at Kīlauea Volcano, Hawai‘i, revealed from slow slip events. In: Carey R, Cayol V, Poland M, Weis D (eds) Hawaiian volcanoes: from source to surface. American Geophysical Union, Washington, DC, pp 269–288. doi:10.1002/9781118872079.ch13

  • Moussallam Y, Edmonds M, Scaillet B, Peters N, Gennaro E, Sides I, Oppenheimer C (2016) The impact of degassing on the oxidation state of basaltic magmas: a case study of Kīlauea volcano. Earth Planet Sci Lett 450:317–325. doi:10.1016/j.epsl.2016.06.031

    Article  Google Scholar 

  • Mucek A (2012) Geochemistry of glasses from the Keanakāko‘i Tephra. Bachelor of Science Senior Thesis, submitted to the University of Hawai‘i at Mānoa

  • Neal CA, Lockwood JP (2003) Geologic map of the summit region of Kilauea Volcano, Hawaii. U.S. Geol Surv Investigations Series I-2759. https://pubs.usgs.gov/imap/i2759/. Accessed 01 Jan 2017

  • Petry C, Chakraborty S, Palme H (2004) Experimental determination of Ni diffusion coefficients in olivine and their dependence on temperature, composition, oxygen fugacity, and crystallographic orientation. Geochim Cosmochim Acta 68(20):4179–4188. doi:10.1016/j.gca.2004.02.024

    Article  Google Scholar 

  • Pietruszka AJ, Heaton DE, Marske JP, Garcia MO (2015) Two magma bodies beneath the summit of Kīlauea Volcano unveiled by isotopically distinct melt deliveries from the mantle. Earth Planet Sci Lett 413:90–100. doi:10.1016/j.epsl.2014.12.040

    Article  Google Scholar 

  • Poland MP, Miklius A, Montgomery-Brown E (2014) Magma supply, storage, and transport at shield-stage Hawaiian volcanoes. In: Poland MP, Takahashi TJ, Landowski  CM (eds) Characteristics of Hawaiian volcanoes. US Geological Survey, Washington, DC, pp 179–234. doi:10.3133/pp18015

  • Prior DJ, Boyle AP, Brenker F, Cheadle MC, Day A, Lopez G, Peruzzo L, Potts GJ, Reddy S, Spiess R, Timms NE, Trimby P, Wheeler J, Zetterström L (1999) The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks. Am Mineral 84:1741–1759. doi:10.2138/am-1999-11-1204

    Article  Google Scholar 

  • Rae ASP, Edmonds M, Maclennan J, Morgan D, Houghton B, Hartley ME, Sides I (2016) Time scales of magma transport and mixing at Kīlauea Volcano, Hawai‘i. Geology 44(6):463–466. doi:10.1130/G37800.1

    Article  Google Scholar 

  • Rhodes JM, Vollinger MJ (2005) Ferric-ferrous ratios in the 1984 Mauna Loa lavas: a contribution to understanding the oxidation state of Hawaiian magmas. Contrib Miner Petrol 149:666–674. doi:10.1007/s00410-005-0662-y

    Article  Google Scholar 

  • Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contr Miner Petrol 29:275–289. doi:10.1007/BF00371276

    Article  Google Scholar 

  • Ryan MP (1988) The mechanics and three-dimensional internal structure of active magmatic systems: Kilauea Volcano, Hawaii. J Geophys Res 93(5):4213–4248. doi:10.1029/JB093iB05p04213

    Article  Google Scholar 

  • Sharp RP, Dzurisin D, Malin MC (1987) An early 19th century reticulite pumice from Kilauea Volcano. In: Decker RW, Wright TL, Stauffer PH (eds) Volcanism in Hawaii. US Geological Survey, Washington, DC, pp 395–404

  • Shea T, Costa F, Krimer D, Hammer JE (2015a) Accuracy of timescales retrieved from diffusion modeling in olivine: a 3D perspective. Am Mineral 100:2026–2042. doi:10.2138/am-2015-5163

    Article  Google Scholar 

  • Shea T, Lynn KJ, Garcia MO (2015b) Cracking the olivine zoning code: distinguishing between crystal growth and diffusion. Geology 43(10):935–938. doi:10.1130/G37082.1

    Article  Google Scholar 

  • Sides IR, Edmonds M, Maclennan J, Swanson DA, Hougton BF (2014) Eruption style at Kīlauea Volcano in Hawai‘i linked to primary melt composition. Nat Geosci 7:464–469. doi:10.1038/ngeo2140

    Article  Google Scholar 

  • Swanson DA (2008) Hawaiian oral tradition describes 400 years of volcanic activity at Kīlauea. J Volcanol Geotherm Res 176(3):427–431. doi:10.1016/j.jvolgeores.2008.01.033

    Article  Google Scholar 

  • Swanson DA, Rose TR, Fiske RS (2006) The layer 6 scoria fall about 400 years ago at Kilauea. EOS Am Geophys Union Trans 87:V33B–0646

    Google Scholar 

  • Swanson DA, Rose TR, Fiske RS, McGeehin JP (2012a) Keanakāko‘i Tephra produced by 300 years of explosive eruptions following collapse of Kīlauea’s caldera in about 1500 CE. J Volcanol Geotherm Res 215–216:8–25. doi:10.1016/j.jvolgeorres.2011.11.009

    Article  Google Scholar 

  • Swanson DA, Zolkos SP, Haravitch B (2012b) Ballistic blocks around Kīlauea Caldera: their vent locations and number of eruptions in the late 18th century. J Volcanol Geotherm Res 231–232:1–11. doi:10.1016/j.jvolgeores.2012.04.008

    Article  Google Scholar 

  • Swanson DA, Rose TR, Mucek AE, Garcia MO, Fiske RS, Mastin LG (2014) Cycles of explosive and effusive eruptions at Kīlauea Volcano, Hawai‘i. Geology 42(7):631–634. doi:10.1130/G35701.1

    Article  Google Scholar 

  • Swanson DA, Weaver SJ, Houghton BF (2015) Reconstructing the deadly eruptive events of 1790 CE at Kīlauea Volcano, Hawai‘i. GSA Bull 127(3–4):503–515. doi:10.1130/B31116.1

    Article  Google Scholar 

  • Swanson DA, Biass S, Garcia M (2017) End of an era: the final explosive eruptions of Keanakāko‘i Tephra at Kīlauea. In: GSA Cordilleran Meeting, pp 43–46

  • Tilling RI, Dvorak JJ (1993) Anatomy of a basaltic volcano. Nature 363(6425):125–133

    Article  Google Scholar 

  • Wagner TP, Grove TL (1998) Melt/harzburgite reaction in the petrogenesis of tholeiitic magma from Kilauea volcano, Hawaii. Contrib Miner Petrol 131:1–12. doi:10.1007/s004100050374

    Article  Google Scholar 

  • Wright TL, Helz RT (1996) Differentiation and magma mixing on Kilauea’s east rift zone: a further look at the eruptions of 1955 and 1960. Part II. The 1960 lavas. Bull Volcanol 57:602–630. doi:10.1007/s004450050115

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Jason Herrin (NTU) and Eric Hellebrand (UH) for support during electron microprobe analyses, Caroline Caplan and Julia Hammer for guidance in electron backscatter diffraction, and Eileen Chen, Scott Milleson, and Valerie Finlayson for assistance with sample preparation. We are grateful to Rosalind Helz and three anonymous reviewers for helping to improve this paper, and thank Gordon Moore for editorial handling. This work was supported by the National Science Foundation (NSF) East Asia and Pacific Summer Institutes grant OISE1513668 in collaboration with the Research Foundation of Singapore, and the Harold T. Stearns Fellowship and the Fred M. Bullard Graduate Fellowship from UH to KL. Additional support was provided by NSF grants EAR1347915 and EAR1449744 to MG, EAR1321890 to TS, and a Singapore Ministry of Education grant (MoE2014-T2-2-041) to FC. This is the University of Hawai‘i School of Ocean and Earth Science and Technology (SOEST) contribution number 10076.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kendra J. Lynn.

Additional information

Communicated by Gordon Moore.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4434 kb)

Supplementary material 2 (XLSX 77 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lynn, K.J., Garcia, M.O., Shea, T. et al. Timescales of mixing and storage for Keanakāko‘i Tephra magmas (1500–1820 C.E.), Kīlauea Volcano, Hawai‘i. Contrib Mineral Petrol 172, 76 (2017). https://doi.org/10.1007/s00410-017-1395-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-017-1395-4

Keywords

Navigation