Skip to main content

Advertisement

Log in

Effect of temperature, pressure and iron content on the electrical conductivity of orthopyroxene

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The electrical conductivity of (Mg1−x , Fe x )SiO3 orthopyroxene with various iron contents [X Fe = Fe/(Fe + Mg) = 0, 0.1, 0.3, 0.5, 0.7 and 1.0] was measured in a Kawai-type multianvil apparatus by impedance spectroscopy over a wide range of pressure (P) and temperature (T) covering the stability field of orthopyroxene. Impedance spectroscopy measurements indicated that the electrical conductivity of orthopyroxene systematically increased with increasing total iron content. The conductivity slightly decreased with increasing pressure at a constant temperature. For samples with lower Fe content, two conduction mechanisms were identified from the Arrhenius behavior. A change in the activation enthalpy indicated that the dominant conduction mechanism changed from small polaron to ionic conduction with increasing temperature. At temperature below 1373 K, relatively low activation enthalpies and small positive activation volumes suggest that the dominant mechanism of charge transport is Fe2+‒Fe3+ hopping (small polaron). At higher temperatures above 1473 K, ionic conduction (via Mg vacancy mobility) dominates, with higher activation enthalpy exceeding 2 eV and larger positive activation volume. All electrical conductivity data fit the formula for electrical conductivity

$$\sigma = \sigma_{0}^{i} \exp \left[ { - \frac{{\left( {\Delta E_{0}^{i} + P\Delta V_{0}^{i} } \right)}}{{k_{\text{B}} T}}} \right] + \sigma_{0}^{p} X_{\text{Fe}} \exp \left\{ { - \frac{{\left[ {\Delta E_{0}^{p} - \alpha X_{\text{Fe}}^{1/3} + P\left( {\Delta V_{0}^{p} - \beta X_{\text{Fe}} } \right)} \right]}}{{k_{\text{B}} T}}} \right\},$$

where σ 0 is the pre-exponential term, ΔE 0 and ΔV 0 are the activation energy and the activation volume at very low total iron concentration, k B is the Boltzmann constant, T is the absolute temperature, and superscripts i and p denote the ionic and small polaron conductions, respectively. Electrical conductivity of Al-free orthopyroxene with X Fe = 0.1 is distinctly lower than that of olivine with X Fe = 0.1. Above 3 GPa Al content in orthopyroxene becomes smaller in association with garnet formation. Unless iron content in orthopyroxene is considerably high (X Fe > 0.2), orthopyroxene has little influence on the electrical structure of the upper mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akashi A, Nishihara Y, Takahashi E, Nakajima Y, Tange Y, Funakoshi K (2009) Orthoenstatite/clinoenstatite phase transformation in MgSiO3 at high-pressure and high-temperature determined by in situ X-ray diffraction: implications for nature of the X discontinuity. J Geophys Res 114:B04206

    Article  Google Scholar 

  • Akimoto S, Katsura T, Syono Y, Fujisawa H, Komada E (1965) Polymorphic transition of pyroxenes FeSiO3 and CoSiO3 at high pressures and temperatures. J Geophys Res 70:5269–5278

    Article  Google Scholar 

  • Akimoto S, Komada E, Kushiro I (1967) Effect of pressure on the melting of olivine and spinel polymorph of Fe2SiO4. J Geophys Res 72:679–686

    Article  Google Scholar 

  • Béjina F, Blanchard M, Wright K, Price GD (2009) A computer simulation study of the effect of pressure on Mg diffusion in forsterite. Phys Earth Planet Inter 172:13–19

    Article  Google Scholar 

  • Chakraborty S, Faver JR, Yund RA, Rubie DC (1994) Mg tracer diffusion in synthetic forsterite and San Carlos olivine as a function of P, T and fO2. Phys Chem Miner 21:489–500

    Article  Google Scholar 

  • Dai L, Karato S (2009) Electrical conductivity of orthopyroxene: implications for the water content of the asthenosphere. Proc Jpn Acad B 85:466–475

    Article  Google Scholar 

  • Dai LD, Li HP, Hu HY, Shan SM (2010) The electrical conductivity of dry polycrystalline olivine compacts at high temperatures and pressures. Mineral Mag 74:849–857

    Article  Google Scholar 

  • Debye PP, Conwell EM (1954) Electrical properties of N-type germanium. Phys Rev 93:693–706

    Article  Google Scholar 

  • Dobson DP (2003) Oxygen ionic conduction in MgSiO3 perovskite. Phys Earth Planet Inter 139:55–64

    Article  Google Scholar 

  • Dobson DP, Brodholt JP (2000) The electrical conductivity of the lower mantle phase magnesiowüstite at high temperatures and pressures. J Geophys Res 105:531–538

    Article  Google Scholar 

  • Du Frane WL, Roberts JJ, Toffelmier DA, Tyburczy JA (2005) Anisotropy of electrical conductivity in dry olivine. Geophys Res Lett 32:L24315

    Article  Google Scholar 

  • Duba AG, Boland JN, Ringwood AE (1973) The electrical conductivity of pyroxene. J Geol 81:727–735

    Article  Google Scholar 

  • Frost DJ, McCammon C (2008) The redox state of Earth’s mantle. Ann Rev Earth Planet Sci 61:1565–1574

    Google Scholar 

  • Ganguly J, Tazzoli V (1994) Fe2+–Mg interdiffusion in orthopyroxene: retrieval from the data on intracrystalline exchange reaction. Am Mineral 79:930–937

    Google Scholar 

  • Goddat A, Peyronneau J, Poirier JP (1999) Dependence on pressure of conduction by hopping of small polarons in minerals mantle. Phys Chem Miner 27:81–87

    Article  Google Scholar 

  • Guo X, Yoshino T, Katayama I (2011) Electrical conductivity anisotropy of deformed talc rocks and serpentinites at 3GPa. Phys Earth Planet Inter 188:69–81

    Article  Google Scholar 

  • Hinze E, Will G, Cemic L (1981) Electrical conductivity measurements on synthetic olivines and on olivine, enstatite and diopside from Dreiser Weiher, Eifel (Germany) under defined thermodynamic activities as a function of temperature and pressure. Phys Earth Planet Inter 25:245–254

    Article  Google Scholar 

  • Hirsch LM, Shankland TJ, Duba AG (1993) Electrical conductivity and polaron mobility in Fe-bearing olivine. Geophys J Int 114:36–44

    Article  Google Scholar 

  • Holland TJB (1980) The reaction albite = jadeite + quartz determined experimentally in the range 600–1200 °C. Am Mineral 65:129–134

    Google Scholar 

  • Holzapfel C, Chakraborty S, Rubie DC, Frost DJ (2007) Effect of pressure on Fe–Mg, Ni and Mn diffusion in (Fe x Mg1−x )2SiO4 olivine. Phys Earth Planet Inter 162:186–198

    Article  Google Scholar 

  • Huebner JS, Duba A, Wiggins LB (1979) Electrical conductivity of pyroxene which contains trivalent cations: laboratory measurements and the lunar temperature profile. J Geophys Res 84:4652–4656

    Article  Google Scholar 

  • Katsura T, Yokoshi S, Kawabe K, Shatskiy A, Okube M, Fukui H, Ito E, Nozawa A, Funakoshi K (2007) Pressure dependence of electrical conductivity of (Mg, Fe)SiO3 ilmenite. Phys Chem Miner 34:249–255

    Article  Google Scholar 

  • Keyes RW (1963) Continuum models of the effect of pressure on activated process. In: Paul W, Warschauer DM (eds) Solids under pressure. McGraw-Hill, New York, pp 71–99

    Google Scholar 

  • Mierdel K, Keppler H, Smyth JR, Langenhorst F (2007) Water solubility in aluminous orthopyroxene and the origin of Earth’s asthenosphere. Science 315:364–368

    Article  Google Scholar 

  • Nestola F, Ballaran TB, Balic-Zunic T, Secco L, Negro D (2008) The high-pressure behavior of an Al- and Fe-rich natural orthopyroxene. Am Mineral 93:644–652

    Article  Google Scholar 

  • Ohta K, Hirose K, Onoda S, Shimizu K (2007) The effect of iron spin transition on electrical conductivity of magnesiowüstite. Proc Jpn Acad Ser B 83:97–100

    Article  Google Scholar 

  • Omura K, Kurita K, Kumazawa M (1989) Experimental study of pressure dependence of electrical conductivity of olivine at high temperatures. Phys Earth Planet Inter 57:291–303

    Article  Google Scholar 

  • Paterson MS (1982) The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar materials. Bull Mineral 105:20–29

    Google Scholar 

  • Poirier JP (1991) Introduction to the physics of the Earth’s interior. Cambridge University Press, Cambridge, p 264

    Google Scholar 

  • Ringwood AE (1975) Composition and petrology of the earth’s mantle. McGraw-Hill, New York

    Google Scholar 

  • Romano C, Poe BT, Kreidie N, McCammon CA (2006) Electrical conductivities of pyrope-almandine garnets up to 19 GPa and 1700 °C. Am Mineral 91:1371–1377

    Article  Google Scholar 

  • Schock RN, Duba AG, Shankland TJ (1989) Electrical conduction in olivine. J Geophys Res 94:5829–5839

    Article  Google Scholar 

  • Seifert KF, Will G, Voigt R (1982) Electrical conductivity measurements on synthetic pyroxenes MgSiO3–FeSiO3 at high pressures and temperatures under defined thermodynamic conditions. In: Schreyer W (ed) High-pressure researches in geoscience. Schweizerbart’sche, Stuttgart, pp 419–432

    Google Scholar 

  • Shankland TJ, Peyronneau J, Poirier JP (1993) Electrical conductivity of the Earth’s lower mantle. Nature 344:453–455

    Article  Google Scholar 

  • Sinmyo R, Pesce G, Greenberg E, McCammon C, Dubrovinsky L (2014) Lower mantle electrical conductivity based on measurements of Al, Fe-bearing perovskite under lower mantle conditions. Earth Planet Sci Lett 393:165–172

    Article  Google Scholar 

  • Xu Y, McCammon C (2002) Evidence for ionic conductivity in lower mantle (Mg, Fe)(Si, Al)O3 perovskite. J Geophys Res 107:2251

    Google Scholar 

  • Xu Y, Shankland TJ (1999) Electrical conductivity of orthopyroxene and its high pressure phases. Geophys Res Lett 26:2645–2648

    Article  Google Scholar 

  • Xu Y, Shankland TJ, Duba AG (2000) Pressure effect on electrical conductivity of mantle olivine. Phys Earth Planet Inter 118:149–161

    Article  Google Scholar 

  • Xu JS, Yamazaki D, Katsura T, Wu XP, Remmert P, Yurimoto H, Chakraborty S (2011) Silicon and magnesium diffusion in a single crystal of MgSiO3 perovskite. J Geophys Res 116:B12205

    Article  Google Scholar 

  • Yang X, Keppler H, McCammon C, Ni HW (2012) Electrical conductivity of orthopyroxene and plagioclase in the lower crust. Contrib Mineral Petrol 163:33–48

    Article  Google Scholar 

  • Yoshino T (2010) Laboratory electrical conductivity measurement of mantle minerals. Surv Geophys 31:163–206

    Article  Google Scholar 

  • Yoshino T, Katsura T (2009) Effect of iron content on electrical conductivity of ringwoodite, with implications for electrical structure in the mantle transition zone. Phys Earth Planet Inter 174:3–9

    Article  Google Scholar 

  • Yoshino T, Matsuzaki T, Yamashita S, Katsura T (2006) Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere. Nature 443:973–976

    Article  Google Scholar 

  • Yoshino T, Matsuzaki T, Shatskiy A, Katsura T (2009) The effect of water on the electrical conductivity of olivine aggregates and its implications for the electrical structure of the upper mantle. Earth Planet Sci Lett 288:291–300

    Article  Google Scholar 

  • Yoshino T, Ito E, Katsura T, Yamazaki D, Shan S, Guo X, Nishi M, Higo Y, Funakoshi K (2011) Effect of iron content on electrical conductivity of ferro-periclase with implications for the spin transition pressure. J Geophys Res 116:B04202

    Article  Google Scholar 

  • Yoshino T, Shimojuku A, Shan S, Guo X, Yamazaki D, Ito E, Higo Y, Funakoshi K (2012) Effect of temperature, pressure and iron content on electrical conductivity of olivine and its high-pressure polymorphs. J Geophys Res 117:B08205

    Article  Google Scholar 

  • Yoshino T, Kamada S, Zhao C, Ohtani E, Hirao N (2016) Electrical conductivity model of Al-bearing bridgmanite with implications for the electrical structure of the Earth’s lower mantle. Earth Planet Sci Lett 434:208–219

    Article  Google Scholar 

  • Zhang B, Yoshino T, Wu X, Matsuzaki T, Shan S, Katsura T (2012) Electrical conductivity of enstatite as a function of water content: implications for the electrical structure in the upper mantle. Earth Planet Sci Lett 357–358:11–20

    Article  Google Scholar 

Download references

Acknowledgements

Two anonymous reviewers provided constructive comments and reviews that improved this paper. We would like to thank Fang Xu for XRD analysis, Shigeru Yamashita and Chengcheng Zhao for FT-IR measurements, and Daisuke Yamazaki, Akira Yoneda, Eiji Ito for their suggestions and discussions. This study was supported by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB 18010401), the 1000Plan Program for Young Talents, Hundred Talent Program of CAS and NSF of China (41303048) to BZ, and also partially supported by the International Cooperative Research Program of Institute for Planetary Materials, Okayama University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baohua Zhang.

Additional information

Communicated by Hans Keppler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Yoshino, T. Effect of temperature, pressure and iron content on the electrical conductivity of orthopyroxene. Contrib Mineral Petrol 171, 102 (2016). https://doi.org/10.1007/s00410-016-1315-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-016-1315-z

Keywords

Navigation