Skip to main content
Log in

Thermodynamic equilibrium at heterogeneous pressure

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Recent advances in metamorphic petrology point out the importance of grain-scale pressure variations in high-temperature metamorphic rocks. Pressure derived from chemical zonation using unconventional geobarometry based on equal chemical potentials fits mechanically feasible pressure variations. Here, a thermodynamic equilibrium method is presented that predicts chemical zoning as a result of pressure variations by Gibbs energy minimization. Equilibrium thermodynamic prediction of the chemical zoning in the case of pressure heterogeneity is done by constrained Gibbs minimization using linear programming techniques. In addition to constraining the system composition, a certain proportion of the system is constrained at a specified pressure. Input pressure variations need to be discretized, and each discrete pressure defines an additional constraint for the minimization. The Gibbs minimization method provides identical results to a geobarometry approach based on chemical potentials, thus validating the inferred pressure gradient. The thermodynamic consistency of the calculation is supported by the similar result obtained from two different approaches. In addition, the method can be used for multi-component, multi-phase systems of which several applications are given. A good fit to natural observations in multi-phase, multi-component systems demonstrates the possibility to explain phase assemblages and zoning by spatial pressure variations at equilibrium as an alternative to pressure variation in time due to disequilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Andersen T, Austrheim H, Burke EAJ (1991) Fluid-induced retrogression of granulites in the Bergen Arcs, Caledonides of W. Norway: fluid inclusion evidence from amphibolite-facies shear zones. Lithos 27:29–42. doi:10.1016/0024-4937(91)90018-G

    Article  Google Scholar 

  • Ashworth JR, Birdi JJ, Emmett TF (1992) Diffusion in coronas around clinopyroxene: modeling with local equilibrium and steady-state, and a non-steady-state modification to account for zoned actinolite-hornblende. Contrib Mineral Petrol 109:307–325

    Article  Google Scholar 

  • Austrheim H, Griffin WL (1985) Shear deformation and eclogite formation within granulite-facies anorthosites of the Bergen Arcs, Western Norway. Chem Geol 50:267–281

    Article  Google Scholar 

  • Baldwin JA, Powell R, Williams ML, Goncalves P (2007) Formation of eclogite, and reaction during exhumation to mid-crustal levels, Snowbird tectonic zone, western Canadian Shield. J Metamorph Geol 25:953–974. doi:10.1111/j.1525-1314.2007.00737.x

    Article  Google Scholar 

  • Barron L (2005) A linear model and topology for the host-inclusion mineral system involving diamond. Can Mineral 43:203–224

    Article  Google Scholar 

  • Bohlen SR, Wall VJ, Boettcher AL (1983) Experimental investigations and geological applications of equilibria in the system FeO–TiO (sub 2) -Al (sub 2) O (sub 3) -SiO (sub 2) -H (sub 2) O. Am Mineral 68:1049–1058

    Google Scholar 

  • Brey GP, Köhler T (1990) Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31:1353–1378

    Article  Google Scholar 

  • Burnley PC (2013) The importance of stress percolation patterns in rocks and other polycrystalline materials. Nat Commun. doi:10.1038/ncomms3117

    Google Scholar 

  • Caddick MJ, Konopasek J, Thompson AB (2010) Preservation of garnet growth zoning and the duration of prograde metamorphism. J Petrol 51:2327–2347. doi:10.1093/petrology/egq059

    Article  Google Scholar 

  • Carswell DA, Harley SL (1990) Mineral barometry and thermometry. In: Carswell DA (ed) Eclogite facies rocks. Blackie, Glasgow, pp 83–110

    Chapter  Google Scholar 

  • Carswell DA, Tucker RD, O’Brien PJ, Krogh TE (2003) Coesite micro-inclusions and the U/Pb age of zircons from the Hareidland eclogite in the Western Gneiss Region of Norway. Lithos 67:181–190

    Article  Google Scholar 

  • Chopin C (1984) Coesite and pure pyrope in high-grade blueschists of the Western Alps: a 1st record and some consequences. Contrib Mineral Petrol 86:107–118

    Article  Google Scholar 

  • Chopin C (2003) Ultrahigh-pressure metamorphism: tracing continental crust into the mantle. Earth Planet Sci Lett 212:1–14

    Article  Google Scholar 

  • Coggon R, Holland TJB (2002) Mixing properties of phengitic micas and revised garnet-phengite thermobarometers. J Metamorph Geol 20:683–696. doi:10.1046/j.1525-1314.2002.00395.x

    Article  Google Scholar 

  • Connolly JAD (2005) Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Sci Lett 236:524–541. doi:10.1016/j.epsl.2005.04.033

    Article  Google Scholar 

  • Dale J, Powell R, White RW et al (2005) A thermodynamic model for Ca–Na clinoamphiboles in Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–O for petrological calculations. J Metamorph Geol 23:771–791. doi:10.1111/j.1525-1314.2005.00609.x

    Article  Google Scholar 

  • Diener JFA, Powell R, White RW, Holland TJB (2007) A new thermodynamic model for clino- and orthoamphiboles in the system Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O-O. J Metamorph Geol 25:631–656

    Article  Google Scholar 

  • Enami M, Nishiyama T, Mouri T (2007) Laser Raman microspectrometry of metamorphic quartz: a simple method for comparison of metamorphic pressures. Am Mineral 92:1303–1315. doi:10.2138/am.2007.2438

    Article  Google Scholar 

  • Esposito RO, Castier M, Tavares FW (2000) Calculations of thermodynamic equilibrium in systems subject to gravitational fields. Chem Eng Sci 55:3495–3504. doi:10.1016/S0009-2509(00)00010-5

    Article  Google Scholar 

  • Fuhrman ML, Lindsley DH (1988) Ternary-feldspar modeling and thermometry. Am Mineral 73:201–215

    Google Scholar 

  • Gaidies F, de Capitani C, Abart R (2008) THERIA_G: a software program to numerically model prograde garnet growth. Contrib Mineral Petrol 155:657–671. doi:10.1007/s00410-007-0263-z

    Article  Google Scholar 

  • Gibbs JW (1906) The scientific papers: thermodynamics. Longmans, Green and co., London

    Google Scholar 

  • Gillet P, Ingrin J, Chopin C (1984) Coesite in subducted continental-crust: P–T history deduced from an elastic model. Earth Planet Sci Lett 70:426–436

    Article  Google Scholar 

  • Griffin WL (1971) Genesis of coronas in anorthosites of Upper Jotun Nappe, Indre-Sogn, Norway. J Petrol 12:219–243

    Article  Google Scholar 

  • Guiraud M, Powell R (2006) P-V-T relationships and mineral equilibria in inclusions in minerals. Earth Planet Sci Lett 244:683–694

    Article  Google Scholar 

  • Holland TJB, Powell R (1990) An enlarged and updated internally consistent thermodynamic dataset with uncertainties and correlations: the system K2O–Na2O–CaO–MgO–MnO–FeO–Fe2O3–Al2O3–TiO2–SiO2–C–H2–O2. J Metamorph Geol 8:89–124

    Article  Google Scholar 

  • Holland T, Powell R (1992) Plagioclase feldspars: activity-composition relations based upon Darken quadratic formalism and Landau theory. Am Mineral 77:53–61

    Google Scholar 

  • Holland T, Powell R (1996) Thermodynamics of order-disorder in minerals.2. Symmetric formalism applied to solid solutions. Am Mineral 81:1425–1437

    Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343

    Article  Google Scholar 

  • Holland T, Powell R (2003) Activity-composition relations for phases in petrological calculations: an asymmetric multicomponent formulation. Contrib Mineral Petrol 145:492–501

    Article  Google Scholar 

  • Hwang SL, Shen P, Yui TF, Chu HT (2007) TiO2 nanoparticle trails in garnet: implications of inclusion pressure-induced microcracks and spontaneous metamorphic-reaction healing during exhumation. J Metamorph Geol 25:451–460. doi:10.1111/j.1525-1314.2007.00705.x

    Article  Google Scholar 

  • Kenkmann T, Dresen G (1998) Stress gradients around porphyroclasts; palaeopiezometric estimates and numerical modelling. Struct Prop High Strain Zones Rocks 20:163–173

    Google Scholar 

  • Kohn MJ (2014) “Thermoba-Raman-try”: calibration of spectroscopic barometers and thermometers for mineral inclusions. Earth Planet Sci Lett 388:187–196. doi:10.1016/j.epsl.2013.11.054

    Article  Google Scholar 

  • Korzhinskii DS (1970) Theory of metasomatic zoning. Clarendon Press, Oxford

    Google Scholar 

  • Koukkari P, Pajarre R (2011) A Gibbs energy minimization method for constrained and partial equilibria. Pure Appl Chem 83:1243–1254. doi:10.1351/Pac-Con-10-09-36

    Google Scholar 

  • Krogh TE, Kamo SL, Robinson P et al (2011) U-Pb zircon geochronology of eclogites from the Scandian Orogen, northern Western Gneiss region, Norway; 14–20 million years between ecologite crystallization and return to amphibolite-facies conditions. Can J Earth Sci Rev Can Sci Terre 48:441–472. doi:10.1139/E10-076

    Article  Google Scholar 

  • Lanari P, Vidal O, De Andrade V et al (2014) XMapTools: A MATLAB (c)-based program for electron microprobe X-ray image processing and geothermobarometry. Comput Geosci 62:227–240. doi:10.1016/j.cageo.2013.08.010

    Article  Google Scholar 

  • Landau LD, Lifshitz EM (1987) Fluid mechanics, 2nd edn. Butterworth Heinemann, Oxford, UK

    Google Scholar 

  • Llana-Funez S, Wheeler J, Faulkner DR (2012) Metamorphic reaction rate controlled by fluid pressure not confining pressure: implications of dehydration experiments with gypsum. Contrib Mineral Petrol 164:69–79. doi:10.1007/s00410-012-0726-8

    Article  Google Scholar 

  • Macgregor ID (1974) The system MgO–Al2O3–SiO2: solubility of Al2O3 in enstatite for spinel and garnet peridotite compositions. Am Mineral 59:110–119

    Google Scholar 

  • Mancktelow NS (2008) Tectonic pressure: theoretical concepts and modelled examples. Lithos 103:149–177. doi:10.1016/j.lithos.2007.09.013

    Article  Google Scholar 

  • Martins LSF, Tavares FW, Pecanha RP, Castier M (2005) Centrifugation equilibrium for spheres and spherocylinders. J Colloid Interface Sci 281:360–367. doi:10.1016/j.jcis.2004.08.106

    Article  Google Scholar 

  • McFarlane CRM, Carlson WD, Connelly JN (2003) Prograde, peak, and retrograde P–T paths from aluminium in orthopyroxene: high-temperature contact metamorphism in the aureole of the Makhavinekh Lake Pluton, Nain Plutonic Suite, Labrador. J Metamorph Geol 21:405–423. doi:10.1046/j.1525-1314.2003.00446.x

    Article  Google Scholar 

  • Milke R, Abart R, Kunze K et al (2009) Matrix rheology effects on reaction rim growth I: evidence from orthopyroxene rim growth experiments. J Metamorph Geol 27:71–82. doi:10.1111/j.1525-1314.2008.00804.x

    Article  Google Scholar 

  • Miller DG (1956) Thermodynamic theory of irreversible processes. II. Sedimentation equilibrium of fluids in gravitational and centrifugal fields. Am J Phys 24:555–561. doi:10.1119/1.1934319

    Article  Google Scholar 

  • Misra S, Mandal N (2007) Localization of plastic zones in rocks around rigid inclusions; insights from experimental and theoretical models. J Geophys Res. doi:10.1029/2006JB004328

    Google Scholar 

  • Mosenfelder JL, Bohlen SR (1997) Kinetics of the coesite to quartz transformation. Earth Planet Sci Lett 153:133–147

    Article  Google Scholar 

  • Moulas E, Podladchikov YY, Aranovich LY, Kostopoulos D (2013) The problem of depth in geology: When pressure does not translate into depth. Petrology 21:527–538. doi:10.1134/S0869591113060052

    Article  Google Scholar 

  • Moulas E, Burg J-P, Podladchikov Y (2014) Stress field associated with elliptical inclusions in a deforming matrix: mathematical model and implications for tectonic overpressure in the lithosphere. Obs Model Perspect Mech Prop Lithosphere 631:37–49. doi:10.1016/j.tecto.2014.05.004

    Google Scholar 

  • Mueller I, Weiss W (2012) Thermodynamics of irreversible processes—past and present. Eur Phys J H 37:139–236. doi:10.1140/epjh/e2012-20029-1

    Article  Google Scholar 

  • Mukai H, Austrheim HO, Putnis CV, Putnis A (2014) Textural evolution of plagioclase feldspar across a shear zone; implications for deformation mechanism and rock strength. J Petrol 55:1457–1477. doi:10.1093/petrology/egu030

    Article  Google Scholar 

  • Nimis P, Grutter H (2010) Internally consistent geothermometers for garnet peridotites and pyroxenites. Contrib Mineral Petrol 159:411–427. doi:10.1007/s00410-009-0455-9

    Article  Google Scholar 

  • O’Brien PJ, Ziemann MA (2008) Preservation of coesite in exhumed eclogite: insights from Raman mapping. Eur J Mineral 20:827–834

    Article  Google Scholar 

  • Parkinson CD (2000) Coesite inclusions and prograde compositional zonation of garnet in whiteschist of the HP-UHPM Kokchetav massif, Kazakhstan: a record of progressive UHP metamorphism. Lithos 52:215–233

    Article  Google Scholar 

  • Parkinson CD, Katayama I (1999) Present-day ultrahigh-pressure conditions of coesite inclusions in zircon and garnet; evidence from laser Raman microspectroscopy. Geol Boulder 27:979–982. doi:10.1130/0091-7613(1999)027<0979:PDUPCO>2.3.CO;2

    Article  Google Scholar 

  • Perrillat JP, Daniel I, Lardeaux JM, Cardon H (2003) Kinetics of the coesite–quartz transition: application to the exhumation of ultrahigh-pressure rocks. J Petrol 44:773–788

    Article  Google Scholar 

  • Powell R (1987) Darken quadratic formalism and the thermodynamics of minerals. Am Mineral 72:1–11

    Google Scholar 

  • Powell R, Holland T (1993) On the formulation of simple mixing models for complex phases. Am Mineral 78:1174–1180

    Google Scholar 

  • Pryer LL, Robin P-YF (1996) Differential stress control on the growth and orientation of flame perthite: a palaeostress-direction indicator. J Struct Geol 18:1151–1166. doi:10.1016/0191-8141(96)00037-5

    Article  Google Scholar 

  • Ravna-Krogh EJ, Paquin J (2003) Thermobarometric methodologies applicable to eclogites and garnet ultrabasites. In: Carswell DA, Compagnoni R (eds) Metamorph. Ultrah. Press., Eötvös University Press, Budapest, pp 229–259

    Google Scholar 

  • Robin P-YF (1974) Stress and strain in cryptoperthite lamellae and the coherent solvus of alkali feldspars. Am Mineral 59:1299–1318

    Google Scholar 

  • Savenko SV, Dijkstra M (2004) Sedimentation and multiphase equilibria in suspensions of colloidal hard rods. Phys Rev E 70:051401. doi:10.1103/PhysRevE.70.051401

    Article  Google Scholar 

  • Schmid DW (2005) Rigid polygons in shear. High-Strain Zones Struct Phys Prop 245:421–431

    Google Scholar 

  • Schmid DW, Podladchikov YY (2003) Analytical solutions for deformable elliptical inclusions in general shear. Geophys J Int 155:269–288

    Article  Google Scholar 

  • Schmid DW, Abart R, Podladchikov YY, Milke R (2009) Matrix rheology effects on reaction rim growth II: coupled diffusion and creep model. J Metamorph Geol 27:83–91

    Article  Google Scholar 

  • Schmidt C, Ziemann MA (2000) In-situ Raman spectroscopy of quartz; a pressure sensor for hydrothermal diamond-anvil cell experiments at elevated temperatures. Am Mineral 85:1725–1734

    Google Scholar 

  • Schrank CE, Fusseis F, Karrech A, Regenauer-Lieb K (2012) Thermal-elastic stresses and the criticality of the continental crust. Geochem Geophys Geosyst. doi:10.1029/2012GC004085

    Google Scholar 

  • Simpson C, Wintsch RP (1989) Evidence for deformation-induced K-feldspar replacement by myrmekite. J Metamorph Geol 7:261–275

    Article  Google Scholar 

  • Smith DC (1984) Coesite in clinopyroxene in the Caledonides and its implications for geodynamics. Nature 310:641–644

    Article  Google Scholar 

  • Smith D, Barron BR (1991) Pyroxene-garnet equilibration during cooling in the mantle. Am Mineral 76:1950–1963

    Google Scholar 

  • Spear FS (1993) Metamorphic phase equilibria and pressure-temperature-time paths. Mineralogical Society of America, Washington, 799 pp

  • Spear FS, Selverstone J (1983) Quantitative P–T paths from zoned minerals: theory and tectonic applications. Contrib Mineral Petrol 83:348–357

    Article  Google Scholar 

  • Stipska P, Powell R, White RW, Baldwin JA (2010) Using calculated chemical potential relationships to account for coronas around kyanite: an example from the Bohemian Massif. J Metamorph Geol 28:97–116. doi:10.1111/j.1525-1314.2009.00857.x

    Article  Google Scholar 

  • Tajčmanová L, Connolly JAD, Cesare B (2009) A thermodynamic model for titanium and ferric iron solution in biotite. J Metamorph Geol 27:153–165. doi:10.1111/j.1525-1314.2008.00812.x

    Article  Google Scholar 

  • Tajčmanová L, Abart R, Neusser G, Rhede D (2011) Growth of plagioclase rims around metastable kyanite during decompression of high-pressure felsic granulites (Bohemian Massif). J Metamorph Geol 29:1003–1018. doi:10.1111/j.1525-1314.2011.00953.x

    Article  Google Scholar 

  • Tajčmanová L, Podladchikov Y, Powell R et al (2014) Grain-scale pressure variations and chemical equilibrium in high-grade metamorphic rocks. J Metamorph Geol 32:195–207. doi:10.1111/jmg.12066

    Article  Google Scholar 

  • Tajčmanová L, Vrijmoed J, Moulas E (2015) Grain-scale pressure variations in metamorphic rocks: implications for the interpretation of petrographic observations. Lithos 216–217:338–351. doi:10.1016/j.lithos.2015.01.006

    Article  Google Scholar 

  • Tenczer V, Stuewe K, Barr TD (2001) Pressure anomalies around cylindrical objects in simple shear. J Struct Geol 23:777–788

    Article  Google Scholar 

  • Van der Molen I, van Roermund HLM (1986) The pressure path of solid inclusions in minerals: the retention of coesite inclusions during uplift. Lithos 19:317–324

    Article  Google Scholar 

  • Vrijmoed JC, Hacker BR (2014) Determining P–T paths from garnet zoning using a brute-force computational method. Contrib Mineral Petrol 167:1–13. doi:10.1007/s00410-014-0997-3

    Google Scholar 

  • Vrijmoed JC, Van Roermund HLM, Davies GR (2006) Evidence for diamond-grade ultra-high pressure metamorphism and fluid interaction in the Svartberget Fe–Ti garnet peridotite-websterite body, Western Gneiss Region, Norway. Mineral Petrol 88:381–405

    Article  Google Scholar 

  • Vrijmoed JC, Smith DC, van Roermund HLM (2008) Raman confirmation of microdiamond in the Svartberget Fe–Ti type garnet peridotite, Western Gneiss Region, Western Norway. Terra Nova 20:295–301

    Article  Google Scholar 

  • Vrijmoed JC, Podladchikov YY, Andersen TB, Hartz EH (2009) An alternative model for ultra-high pressure in the Svartberget Fe–Ti garnet-peridotite, Western Gneiss Region, Norway. Eur J Mineral 21:1119–1133. doi:10.1127/0935-1221/2009/0021-1985

    Article  Google Scholar 

  • Vrijmoed JC, Austrheim H, John T et al (2013) Metasomatism of the ultra-high pressure Svartberget Fe–Ti type garnet-peridotite, Western Gneiss Region, Norway. J Petrol 54:1815–1848. doi:10.1093/petrology/egt032

    Article  Google Scholar 

  • Wensink HH, Lekkerkerker HNW (2004) Sedimentation and multi-phase equilibria in mixtures of platelets and ideal polymer. Europhys Lett 66:125–131. doi:10.1209/epl/i2003-10140-1

    Article  Google Scholar 

  • White RW, Powell R, Holland TJB (2007) Progress relating to calculation of partial melting equilibria for metapelites. J Metamorph Geol 25:511–527

    Article  Google Scholar 

  • Will TM, Powell R (1992) Activity-composition relationships in multicomponent amphiboles: an application of darken quadratic formalism. Am Mineral 77:954–966

    Google Scholar 

  • Wood BJ (1974) Solubility of alumina in orthopyroxene coexisting with garnet. Contrib Mineral Petrol 46:1–15

    Article  Google Scholar 

  • Ye K, Liou JB, Cong B, Maruyama S (2001) Overpressures induced by coesite-quartz transition in zircon. Am Mineral 86:1151–1155

    Google Scholar 

  • Young TF, Kraus KA, Johnson JS (1954) Thermodynamics of equilibrium in the ultracentrifuge. J Chem Phys 22:878–880

    Article  Google Scholar 

  • Zhang Y (1998a) Mechanical and phase equilibria in inclusion-host systems. Earth Planet Sci Lett 157:209–222

    Article  Google Scholar 

  • Zhang Y (1998b) Solving large-scale linear programs by interior-point methods under the MATLAB environment. Optim Methods Softw 10:1–31. doi:10.1080/10556789808805699

    Article  Google Scholar 

Download references

Acknowledgments

The work presented here profited from discussions with various people starting at Physics of Geological Processes (PGP) in 2005 and from discussions with L. Tajčmanová and E. Moulas at ETH Zurich. Financial support was provided by Faculty of Earth Sciences, University of Lausanne, and by ERC starting Grant 335577 to Lucie Tajčmanová.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Vrijmoed.

Additional information

Communicated by Othmar Müntener.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 839 kb)

Appendices

Appendix 1: Gibbs energy calculation

Pure phases

Partial molar Gibbs energy (g 0) for mineral and liquid end-members is generalized as a linear combination of the independent (idp) set of end-members in the internally consistent thermodynamic data set of Holland and Powell (1998), hereafter referred to as HP98 data set. Enthalpy of formation of ordered end-members (Holland and Powell 1996) and energies for fictive end-members following from application of Darken’s Quadratic Formalism (Powell 1987; Holland and Powell 1992; Will and Powell 1992) are generalized by a single DQF parameter:

$$g^{0} = \sum\limits_{idp = 1}^{nidp} {v_{idp} \cdot } \Delta G_{idp}^{0} + {\text{DQF}}$$
(9)

For the independent end-members in the HP98 data set, the stoichiometric coefficient and the DQF parameter are 1 and 0, respectively. Partial molar Gibbs energy of these end-members is calculated following standard formulation (Spear 1993), with the addition of two excess Gibbs energy terms for phases treated to a Landau model (Holland and Powell 1998):

$$\Delta G^{0} = \underbrace {{\Delta_{f} H_{\text{ref}} + \int\limits_{{T_{\text{ref}} }}^{T} {C_{p} \cdot {\text{d}}T} + \int\limits_{{P_{\text{ref}} }}^{P} {V \cdot {\text{d}}P} }}_{H} - T \cdot \underbrace {{\left( {S_{\text{ref}} + \int\limits_{{T_{\text{ref}} }}^{T} {\frac{{C_{p} }}{T} \cdot {\text{d}}T} } \right)}}_{S} + \Delta G_{\text{exc}} + \Delta G_{\text{landau}}$$
(10)

Heat capacity is given by the polynomial in the caption of Table 5 in Holland and Powell (1998):

$$C_{p} = a + b \cdot T + c \cdot T^{2} + d \cdot T^{ - 1/2}$$
(11)

Volume at reference pressure (1 bar) and elevated temperatures is given by Holland and Powell (1998):

$$V_{1,T} = V_{\text{ref}} \cdot \left[ {1 + a^{0} \cdot \left( {T - T_{\text{ref}} } \right) - 20 \cdot a^{0} \cdot \left( {\sqrt T - \sqrt {T_{\text{ref}} } } \right)} \right]$$
(12)

Volume at elevated pressure is modeled with the Murnaghan equation of state rearranged for volume:

$$V = \frac{{V_{1,T} }}{{\left( {\frac{4 \cdot P}{{k_{T} + 1}}} \right)^{1/4} }}$$
(13)

The bulk modulus is given by Holland and Powell (1998):

$$k_{T} = k_{\text{ref}} \cdot \left( {1 - 1.5 \cdot 10^{ - 4} \cdot \left( {T - T_{\text{ref}} } \right)} \right)$$
(14)

Landau model excess energy

Phases undergoing order–disorder or lambda heat capacity anomalies are treated with a Landau model (Holland and Powell 1990, 1998). The excess Gibbs energy term related to this model is calculated from:

$$\Delta G_{\text{exc}} = h_{\text{ref}}^{'} - T \cdot s_{\text{ref}}^{'} + \int\limits_{{P_{\text{ref}} }}^{P} {v_{T}^{'} \cdot {\text{d}}P}$$
(15)

With the enthalpy and entropy at reference conditions given in Eqs. (16) and (17):

$$h_{\text{ref}}^{'} = S_{\hbox{max} } T_{c}^{0} \cdot \left( {Q_{\text{ref}}^{2} - \frac{1}{3} \cdot Q_{\text{ref}}^{6} } \right)$$
(16)
$$s_{\text{ref}}^{'} = S_{\hbox{max} } \cdot Q_{\text{ref}}^{2}$$
(17)

The volume integral is evaluated again with the Murnaghan equation of state using the volume at reference pressure and elevated temperature from:

$$v_{T}^{'} = \frac{{V_{\hbox{max} } \cdot Q_{\text{ref}}^{2} }}{{V_{\text{ref}} }} \cdot V_{1,T}$$
(18)

The Landau excess energy is then obtained with:

$$\Delta G_{\text{Land}} = S_{\hbox{max} } \left( {\left( {T - T_{c} } \right) \cdot Q^{2} + \frac{1}{3} \cdot T_{c} \cdot Q^{6} } \right)$$
(19)

This term is added only at temperatures below the critical temperature T c :

$$T_{c} = T_{c}^{0} + \frac{{V_{\hbox{max} } }}{{S_{\hbox{max} } }} \cdot \left( {P - P_{\text{ref}} } \right)$$
(20)

The order parameter Q (and Q ref evaluated at reference conditions) is calculated as:

$$Q = \left( {1 - \frac{T}{{T_{c} }}} \right)^{1/4}$$
(21)

Parameters needed in Eqs. (10)–(21) are: Δ f H ref, S ref, a, b, c, d, V ref, a 0, k ref, Tc 0, S max and V max. Most updated values of these parameters are found in the tc-ds55 file bundled with the most recent version of THERMOCALC (http://www.metamorph.geo.uni-mainz.de/thermocalc). Reference conditions are 298.15°K at 1 bar. See Table 3 for a complete list of symbols and parameters used in “Appendix 1”.

Table 3 Description of symbols and parameters used in the presented equations in the Appendix 1

Ordered and fictive end-members

Stoichiometric coefficients (v idp ) and name of independent end-members in Eq. 9 are found in activity–composition (a–x) files bundled with THERMOCALC or individually downloadable from http://www.metamorph.geo.uni-mainz.de/thermocalc. The DQF parameter capturing both the DQF energy of fictive end-members and the enthalpy of reactions forming ordered end-members is given as:

$${\text{DQF}} = a_{\text{DQF}} + b_{\text{DQF}} \cdot T + c_{\text{DQF}} \cdot P$$
(22)

Parameters a DQF, b DQF and c DQF are found in the lines below the stoichiometric coefficients in the same a–x files.

Solid solutions

The partial molar Gibbs energy of mixing in solid solutions and melts consist of a mechanical (mech), ideal (id), and a non-ideal (nid) part:

$$g = g_{\text{mech}} + g_{\text{id}} + g_{\text{nid}}$$
(23)

Mechanical mixing Gibbs energy consists of a linear combination of the total number (np) of end-member Gibbs energies in the solution, obtained from Eq. (9) above, multiplied by its proportion p.

$$g_{\text{mech}} = \sum\limits_{ip = 1}^{np} {g_{ip}^{0} } \cdot p_{ip}$$
(24)

Ideal mixing Gibbs energy, or configurational energy, is obtained from the sum of crystallographic site fractions following Stirling’s approximation (see also the Appendix in Tajčmanová et al. 2009).

$$g_{id} = T \cdot \left( {R \cdot \sum\limits_{iz = 1}^{nz} {m_{iz} \cdot z_{iz} \cdot \ln \left( {z_{iz} } \right)} - \sum\limits_{ip = 1}^{np} {s_{ip}^{0} } \cdot p_{ip} } \right)$$
(25)

Definition of certain solution models results in nonzero site fractions for some end-members leading to nonzero configurational entropy for the pure end-member. This is corrected for by the last sum in Eq. (25), because in principle pure phases do not contribute to ideal mixing energy. The configurational entropy for the pure end-members in the solution is calculated from site fractions of pure end-member (z 0):

$$s_{ip}^{0} = R \cdot \sum\limits_{iz = 1}^{nz} {m_{iz} \cdot z_{ip,iz}^{0} \cdot \ln \left( {z_{ip,iz}^{0} } \right)}$$
(26)

For example, the anorthite end-member in ternary feldspar is defined as having the tetrahedral site filled half with Al and the other half with Si, so that both site fractions (Si and Al on the tetrahedral site) are half. An equivalent approach for chemical potentials is described in Powell and Holland (1993).

Non-ideal mixing Gibbs energy is generalized to account for ternary interaction parameters and asymmetric Van Laar formulation (Holland and Powell 2003):

$$g_{nid} = \sum\limits_{iw = 1}^{nw} {W_{iw}^{*} \cdot \prod\limits_{ip = 1}^{ni} {\varphi_{{wi_{ip,iw} }} } }$$
(27)

The Margules parameters \(W_{iw}^{*}\) are multiplied by the product of proportions φ corresponding to the iwth interaction parameter. The indices of φ for each iwth interaction parameter are stored in a matrix “wi.” This matrix has nw number of Margules parameters and ni number of end-member indices. The number of multiplied proportions (ni) is depending on the solution model. Usually the Margules parameters are binary interaction, but for feldspar they are ternary interaction parameters. This corrected Margules parameter \(W_{iw}^{*}\) is obtained from Margules parameters W iw fitted in experiments (e.g., found in literature) multiplied by proportions of interacting end-members and corrected by a size parameter (α):

$$W_{{^{iw} }}^{*} = W_{iw} \cdot \frac{{ni \cdot \left( {\sum\nolimits_{k = 1}^{np} {\alpha_{k} \cdot p_{k} } } \right)}}{{\sum\nolimits_{ip = 1}^{ni} {\alpha_{{wi_{ip,iw} }} } }}$$
(28)

The asymmetric proportion φ of the ith end-member is found from:

$$\varphi_{i} = \frac{{p_{i} \cdot \alpha_{i} }}{{\sum\nolimits_{j = 1}^{np} {p_{j} \cdot \alpha_{j} } }}$$
(29)

Both the Margules and α parameters are in principle pressure and temperature dependent and parameterized as:

$$W = W_{0} + W_{T} \cdot T + W_{P} \cdot P$$
(30)
$$\alpha = \alpha_{0} + \alpha_{T} \cdot T + \alpha_{P} \cdot P$$
(31)

Values for α 0 , α Τ , α P and W 0 , W T , W P are found in literature describing solution models, from a–x files bundled with THERMOCALC or from the solution_model.dat file packaged with Perple_X.

Site speciation

Finding the site fractions as function of mineral compositions is done by setting up a linear system of equations. The first set of equations is found by the definition that site fractions on each site sum up to 1. This gives ns (number of sites) equations. For each isth site, the equation is:

$$\sum\limits_{i = 1}^{nz} {z_{is,iz} \cdot v_{is,iz} } = 1$$
(32)

The second set of equations is given by the definition of compositional variables:

$$\sum\limits_{iz = 1}^{nz} {z_{iz} \cdot v_{ic,iz} } = C_{ic}$$
(33)

In case of order–disorder in a mineral, for each ordered end-member, an extra equation is required that defines the order parameter.

$$\sum\limits_{iz = 1}^{nz} {z_{iz} \cdot v_{iQ,iz} } = Q_{iQ}$$
(34)

Then, any extra assumptions form additional equations (e.g., equal distribution of an element over different sites):

$$\sum\limits_{iz = 1}^{nz} {z_{iz} \cdot v_{iex,iz} } = 0$$
(35)

If the system of equations is not closed, a charge balance equation can be added to ensure electro-neutrality:

$$\sum\limits_{iz = 1}^{nz} {z_{iz} \cdot m_{iz} \cdot \varepsilon_{iz} } = 2 \cdot nO$$
(36)

After the site fractions have been found as function of compositional variables, the proportions of end-members as function of site fractions can be solved from the obtained matrix of site fractions and proportions of end-members.

The first equation is always the constraint that proportions sum up to 1:

$$\sum\limits_{ip = 1}^{np} {p_{ip} } = 1$$
(37)

For the remaining equations, the independent set of equations of site fraction as function of proportion is chosen:

$$z_{ind} = \sum\limits_{ip = 1}^{np} {p_{ip} \cdot \nu_{ind,ip}^{p} }$$
(38)

Appendix 2: Site speciation and proportion calculation example

Clinoamphibole

For clinoamphibole from Diener et al. (2007) (closely resembling orthoamphibole from the same authors), identical to cAmph(DP) or cAmph(DP2) in Perple_X, the crystallography can be tabulated as:

 

Site 1

Site 2

Site 3

Site 4

Site 5

Crystallography

A

M13

M2

M4

T1

Multiplicity

1

3

2

2

4 (1)

Site fraction

z 1

z 2

z 3

z 4

z 5

z 6

z 7

z 8

z 9

z 10

z 11

z 12

z 13

z 14

Charge

0

1

2

2

2

2

3

3

2

2

2

1

4

3

Element

V

Na

Mg

Fe

Mg

Fe

Al

Fe3

Ca

Mg

Fe

Na

Si

Al

The brackets indicate a multiplicity which is employed by Diener et al. (2007) to calculate ideal mixing energy rather than using the actual site multiplicity (see also comments in solution_model.dat file from the current version of Perple_X software package). For charge balance in equations below, the correct multiplicity (4) is used.

From this the set of equations, to find site fraction can be written:

(39)

The last two equations to close the system are unknown site fractions that need to be varied independently. They function like an order–disorder parameter such as Q’s used in THERMOCALC formulations (Eq. 34).

Solving this for site fraction z gives:

$$\begin{aligned} & z_{1} = \frac{9}{2} - \frac{3}{4}{\text{Na}} - \frac{1}{2}{\text{Mg}} - \frac{1}{2}{\text{Ca}} - \frac{1}{2}{\text{Fe}} - \\\frac{1}{4}{\text{Fe}}^{3 + } - \frac{1}{4}{\text{Al}} \\ & z_{2} = \frac{3}{4}{\text{Na}} - \frac{7}{2} + \frac{1}{2}{\text{Mg}} + \frac{1}{2}{\text{Ca}} + \frac{1}{2}{\text{Fe}} + \frac{1}{4}{\text{Fe}}^{3 + } + \frac{1}{4}\text{Al} \\ & z_{3} = 1 - z_{\text{Fe}}^{{{\text{M}}_{13} }} \\ & z_{4} = z_{\text{Fe}}^{{{\text{M}}_{13} }} \\ & z_{5} = - \frac{3}{4} + \frac{1}{4}{\text{Mg}} + \frac{1}{4}{\text{Ca}} + \frac{1}{4}{\text{Fe}} - \frac{1}{8}{\text{Fe}}^{3 + } - \frac{1}{8}{\text{Al}} + \frac{1}{8}{\text{Na}} - z_{\text{Fe}}^{{{\text{M}}_{2} }} \\ & z_{6} = z_{\text{Fe}}^{{\text{M}_{2} }} \\ & z_{7} = \frac{7}{4} - \frac{1}{4}{\text{Mg}} - \frac{1}{4}{\text{Ca}} - \frac{1}{4}{\text{Fe}} - \frac{3}{8}{\text{Fe}}^{3 + } + \frac{1}{8}{\text{Al}} - \frac{1}{8}{\text{Na}} \\ & z_{8} = \frac{1}{2}{\text{Fe}}^{3 + } \\ & z_{9} = \frac{1}{2}{\text{Ca}} \\ & z_{10} = - \frac{3}{4} + \frac{3}{2}z_{\text{Fe}}^{{{\text{M}}_{13} }} + z_{\text{Fe}}^{{{\text{M}}_{2} }} - \frac{1}{4}{\text{Fe}} - \frac{1}{8}{\text{Na}} + \frac{1}{4}{\text{Mg}} - \frac{1}{4}{\text{Ca}} + \frac{1}{8}{\text{Fe}}^{3 + } + \frac{1}{8}{\text{Al}} \\ & z_{11} = - \frac{3}{2}z_{\text{Fe}}^{{{\text{M}}_{13} }} - z_{\begin{subarray}{l} {\text{Fe}} \\ \end{subarray} }^{{\text{M}_{2} }} + \frac{1}{2}\text{Fe} \\ & z_{12} = \frac{7}{4} + \frac{1}{8}{\text{Na}} - \frac{1}{4}{\text{Mg - }}\frac{1}{4}{\text{Ca}} - \frac{1}{4}{\text{Fe}} - \frac{1}{8}{\text{Fe}}^{3 + } - \frac{1}{8}{\text{Al}} \\ & z_{13} = \frac{15}{8} - \frac{1}{8}{\text{Mg}} - \frac{1}{8}{\text{Ca}} - \frac{1}{8}{\text{Fe}} - \frac{3}{16}{\text{Fe}}^{3 + } - \frac{3}{16}{\text{Al}} - \frac{1}{16}{\text{Na}} \\ & z_{14} = - \frac{7}{8} + \frac{1}{8}{\text{Mg}} + \frac{1}{8}{\text{Ca}} + \frac{1}{8}{\text{Fe}} + \frac{3}{16}{\text{Fe}}^{3 + } + \frac{3}{16}{\text{Al}} + \frac{1}{16}{\text{Na}} \\ \end{aligned}$$
(40)

Substituting the compositional variables (Al, Fe, Mg, Ca, Na and Fe3+) for each end-member (found in the tc-ds55 database file) and the site fractions for the ordered end-members (a and b) gives the site fractions in the table below:

  

z 1

z 2

z 3

z 4

z 5

z 6

z 7

z 8

z 9

z 10

z 11

z 12

z 13

z 14

tr

p 1

1

0

1

0

1

0

0

0

1

0

0

0

1

0

ts

p 2

1

0

1

0

0

0

1

0

1

0

0

0

½

½

parg

p 3

0

1

1

0

½

0

½

0

1

0

0

0

½

½

gl

p 4

1

0

1

0

0

0

1

0

0

0

0

1

1

0

cumm

p 5

1

0

1

0

1

0

0

0

0

1

0

0

1

0

grun

p 6

1

0

0

1

0

1

0

0

0

0

1

0

1

0

a

p 7

1

0

1

0

0

1

0

0

0

0

1

0

1

0

b

p 8

1

0

0

1

1

0

0

0

0

0

1

0

1

0

mrb

p 9

1

0

1

0

0

0

0

1

0

0

0

1

1

0

Choosing the independent equations from the columns in the table above along with the requirement that the end-members sum up to one gives:

$$\begin{aligned} & 1 = p_{1} + p_{2} + p_{3} + p_{4} + p_{5} + p_{6} + p_{7} + p_{8} + p_{9} \\ & z_{1} = p_{1} + p_{2} + p_{4} + p_{5} + p_{6} + p_{7} + p_{8} + p_{9} \\ & z_{3} = p_{1} + p_{2} + p_{3} + p_{4} + p_{5} + p_{7} + p_{9} \\ & z_{5} = p_{1} + \frac{1}{2}p_{3} + p_{5} + p_{8} \\ & z_{6} = p_{6} + p_{7} \\ & z_{7} = p_{2} + \frac{1}{2}p_{3} + p_{4} \\ & z_{9} = p_{1} + p_{2} + p_{3} \\ & z_{10} = p_{5} \\ & z_{11} = p_{6} + p_{7} + p_{8} \\ \end{aligned}$$
(41)

Solving for p gives:

$$\begin{aligned} & p_{1} = \frac{1}{2}z_{1} + z_{5} + z_{6} - z_{10} - z_{11} - \frac{1}{2} \\ & p_{2} = \frac{1}{2}z_{1} - z_{5} - z_{6} + z_{9} + z_{10} + z_{11} - \frac{1}{2} \\ & p_{3} = 1 - z_{1} \\ & p_{4} = z_{5} + z_{6} + z_{7} - z_{9} - z_{10} - z_{11} \\ & p_{5} = z_{10} \\ & p_{6} = 1 - z_{3} + z_{6} - z_{11} \\ & p_{7} = z_{3} + z_{11} - 1 \\ & p_{8} = - z_{6} + z_{11} \\ & p_{9} = 1 - z_{5} - z_{6} - z_{7} \\ \end{aligned}$$
(42)

Appendix 3: Pressure constraints example

As an example, here the equations for the pressure constraints in a system with three different pressures, three phases and three compositions are spelled out.

The pressure constraints:

$$\begin{aligned} & \alpha_{1}^{1} + \alpha_{2}^{1} + \alpha_{3}^{1} = \pi_{\text{sys}}^{1} \\ & \alpha_{1}^{2} + \alpha_{2}^{2} + \alpha_{3}^{2} = \pi_{\text{sys}}^{2} \\ & \alpha_{1}^{3} + \alpha_{2}^{3} + \alpha_{3}^{3} = \pi_{\text{sys}}^{3} \\ \end{aligned}$$
(43)

The Gibbs energy function is to be minimized:

$$g_{\text{sys}} = \alpha_{1}^{1} \left. {g_{1} } \right|_{{P_{1} }} + \alpha_{2}^{1} \left. {g_{2} } \right|_{{P_{1} }} + \alpha_{3}^{1} \left. {g_{3} } \right|_{{P_{1} }} + \alpha_{1}^{2} \left. {g_{1} } \right|_{{P_{2} }} + \alpha_{2}^{2} \left. {g_{2} } \right|_{{P_{2} }} + \alpha_{3}^{2} \left. {g_{3} } \right|_{{P_{2} }} + \alpha_{1}^{3} \left. {g_{1} } \right|_{{P_{3} }} + \alpha_{2}^{3} \left. {g_{2} } \right|_{{P_{3} }} + \alpha_{3}^{3} \left. {g_{3} } \right|_{{P_{3} }}$$
(44)

The system composition constraints look similar to Eq. 44, for example, in case of having a component x CaO:

$$x_{\text{sys}}^{\text{CaO}} = \alpha_{1}^{1} x_{1}^{\text{CaO}} + \alpha_{2}^{1} x_{2}^{\text{CaO}} + \alpha_{3}^{1} x_{3}^{\text{CaO}} + \alpha_{1}^{2} x_{1}^{\text{CaO}} + \alpha_{2}^{2} x_{2}^{\text{CaO}} + \alpha_{3}^{2} x_{3}^{\text{CaO}} + \alpha_{1}^{3} x_{1}^{\text{CaO}} + \alpha_{2}^{3} x_{2}^{\text{CaO}} + \alpha_{3}^{3} x_{3}^{\text{CaO}}$$
(45)

For MATLAB, the constraint equations are written in matrix form resulting in:

$$\left[ {\begin{array}{*{20}c} {x_{1}^{{{\text{SiO}}_{2} }} } &\quad {x_{2}^{{{\text{SiO}}_{2} }} } & \quad {x_{3}^{{{\text{SiO}}_{2} }}}& \quad {x_{1}^{{{\text{SiO}}_{2} }} } &\quad {x_{2}^{{{\text{SiO}}_{2} }} } &\quad {x_{3}^{{{\text{SiO}}_{2} }} } &\quad {x_{1}^{{{\text{SiO}}_{2} }} } &\quad {x_{2}^{{{\text{SiO}}_{2} }} } &\quad {x_{3}^{{{\text{SiO}}_{2} }} } \\ {x_{1}^{\text{CaO}} } & \quad{x_{2}^{\text{CaO}} } & \quad {x_{3}^{\text{CaO}} } & \quad{x_{1}^{\text{CaO}} } &\quad {x_{2}^{\text{CaO}} } &\quad {x_{3}^{\text{CaO}} } &\quad {x_{1}^{\text{CaO}} } &\quad {x_{2}^{\text{CaO}} } &\quad {x_{3}^{\text{CaO}} } \\ {x_{1}^{{{\text{Al}}_{2} {\text{O}}_{3} }} } & \quad{x_{2}^{{{\text{Al}}_{2} {\text{O}}_{3} }} } & \quad{x_{3}^{{{\text{Al}}_{2} {\text{O}}_{3} }} } & \quad{x_{1}^{{{\text{Al}}_{2} {\text{O}}_{3} }} } & \quad{x_{2}^{{{\text{Al}}_{2} {\text{O}}_{3} }} } & \quad{x_{3}^{{{\text{Al}}_{2} {\text{O}}_{3} }} } & \quad{x_{1}^{{{\text{Al}}_{2} {\text{O}}_{3} }} } & \quad {x_{2}^{{{\text{Al}}_{2} {\text{O}}_{3} }} } & \quad{x_{3}^{{{\text{Al}}_{2} {\text{O}}_{3} }} } \\ 1 &\quad 1 &\quad 1 &\quad 0 &\quad 0 &\quad 0 &\quad 0 &\quad 0 &\quad 0 \\ 0 &\quad 0 & \quad0 & \quad1 &\quad 1 &\quad 1 &\quad 0 & \quad0 &\quad 0 \\ 0 &\quad 0 &\quad 0 &\quad 0 & \quad0 & \quad0 &\quad 1 &\quad 1 &\quad 1 \\ 1 &\quad 1 & \quad1 & \quad1 &\quad 1 &\quad 1 &\quad 1 &\quad 1 &\quad 1 \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {\alpha_{1}^{1} } \\ {\alpha_{2}^{1} } \\ {\alpha_{3}^{1} } \\ {\alpha_{1}^{2} } \\ {\alpha_{2}^{2} } \\ {\alpha_{3}^{2} } \\ {\alpha_{1}^{3} } \\ {\alpha_{2}^{3} } \\ {\alpha_{3}^{3} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {x_{\text{sys}}^{{{\text{SiO}}_{2} }} } \\ {x_{\text{sys}}^{\text{CaO}} } \\ {x_{\text{sys}}^{{{\text{Al}}_{2} {\text{O}}_{3} }} } \\ {\pi_{\text{sys}}^{1} } \\ {\pi_{\text{sys}}^{2} } \\ {\pi_{\text{sys}}^{3} } \\ 1 \\ \end{array} } \right]$$
(46)

The optimization algorithm (function linprog in MATLAB) then searches for the alpha’s between 0 and 1 that gives the minimum of Eq. 44 satisfying the equality matrix in Eq. 46. See Appendix 4 for code examples.

Appendix 4: Code examples

Code for standard P–T diagram calculation:

figure a

An example code to do minimization in presence of a pressure gradient:

figure b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vrijmoed, J.C., Podladchikov, Y.Y. Thermodynamic equilibrium at heterogeneous pressure. Contrib Mineral Petrol 170, 10 (2015). https://doi.org/10.1007/s00410-015-1156-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-015-1156-1

Keywords

Navigation