Skip to main content

Advertisement

Log in

The origin and crust/mantle mass balance of Central Andean ignimbrite magmatism constrained by oxygen and strontium isotopes and erupted volumes

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Volcanism during the Neogene in the Central Volcanic Zone (CVZ) of the Andes produced (1) stratovolcanoes, (2) rhyodacitic to rhyolitic ignimbrites which reach volumes of generally less than 300 km3 and (3) large-volume monotonous dacitic ignimbrites of up to several thousand cubic kilometres. We present models for the origin of these magma types using O and Sr isotopes to constrain crust/mantle proportions for the large-volume ignimbrites and explore the relationship to the evolution of the Andean crust. Oxygen isotope ratios were measured on phenocrysts in order to avoid the effects of secondary alteration. Our results show a complete overlap in the Sr–O isotope compositions of lavas from stratovolcanoes and low-volume rhyolitic ignimbrites as well as older (>9 Ma) large-volume dacitic ignimbrites. This suggests that the mass balance of crustal and mantle components are largely similar. By contrast, younger (<10 Ma) large-volume dacitic ignimbrites from the southern portion of the Central Andes have distinctly more radiogenic Sr and heavier O isotopes and thus contrast with older dacitic ignimbrites in northernmost Chile and southern Peru. Results of assimilation and fractional crystallization (AFC) models show that the largest chemical changes occur in the lower crust where magmas acquire a base-level geochemical signature that is later modified by middle to upper crustal AFC. Using geospatial analysis, we estimated the volume of these ignimbrite deposits throughout the Central Andes during the Neogene and examined the spatiotemporal pattern of so-called ignimbrite flare-ups. We observe a N–S migration of maximum ages of the onset of large-volume “ignimbrite pulses” through time: Major pulses occurred at 19–24 Ma (e.g. Oxaya, Nazca Group), 13–14 Ma (e.g. Huaylillas and Altos de Pica ignimbrites) and <10 Ma (Altiplano and Puna ignimbrites). Such “flare-ups” represent magmatic production rates of 25 to >70 km3 Ma−1 km−1 (assuming plutonic/volcanic ratios of 1:5) which are additional to, but within the order of, the arc background magmatic flux. Comparing our results to average shortening rates observed in the Andes, we observe a “lag-time” with large-volume eruptions occurring after accelerated shortening. A similar delay exists between the ignimbrite pulses and the subduction of the Juan Fernandez ridge. This is consistent with the idea that large-volume ignimbrite eruptions occurred in the wake of the N–S passage of the ridge after slab steepening has allowed hot asthenospheric mantle to ascend into and cause the melting of the mantle wedge. In our model, the older large-volume dacitic ignimbrites in the northern part of the CVZ have lower (15–37 %) crustal contributions because they were produced at times when the Central Andean crust was thinner and colder, and large-scale melting in the middle crust could not be achieved. Younger ignimbrite flare-ups further south (<10 Ma, >22°S) formed with a significantly higher crustal contribution (22–68 %) because at that time the Andean crust was thicker and hotter and, therefore primed for more extensive crustal melting. The rhyolitic lower-volume ignimbrites are more equally distributed in the CVZ in time and space and are produced by mechanisms similar to those operating below large stratovolcanoes, but at times of higher melt fluxes from the mantle wedge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aitcheson SJ, Forrest AH (1994) Quantification of crustal contamination in open magmatic systems. J Petrol 35:461–488

    Google Scholar 

  • Allmendinger RW, Jordan TE, Kay SM, Isacks BL (1997) The evolution of the Altiplano-Puna plateau of the Central Andes. Annu Rev Earth Planet Sci 25:139–174

    Google Scholar 

  • Allmendinger RW, Smalley R, Bevis M, Caprio H, Brooks B (2005) Bending the Bolivian orocline in real time. Geology 33:905–908

    Google Scholar 

  • Alonso-Perez R, Müntener O, Ulmer P (2009) Igneous garnet and amphibole fractionation in the roots of island arcs: experimental constraints on andesitic liquids. Contrib Mineral Petrol 157:541–558

    Google Scholar 

  • Annen C (2009) From plutons to magma chambers: thermal constraints on the accumulation of eruptible silicic magma in the upper crust. Earth Planet Sci Lett 284:409–416

    Google Scholar 

  • Annen C, Blundy JD, Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47:505–539

    Google Scholar 

  • Bachmann O, Bergantz GW (2004) On the origin of crystal-poor rhyolites: extracted from batholithic crystal mushes. J Petrol 45:1565–1582

    Google Scholar 

  • Bachmann O, Dungan MA, Lipman P (2002) The Fish Canyon magma body, San Juan volcanic field, Colorado: rejuvenation and eruption of an upper-crustal batholith. J Petrol 43:1469–1503

    Google Scholar 

  • Baker MCW, Francis PW (1978) Upper Cenozoic volcanism in Central Andes—ages and volumes. Earth Planet Sci Lett 41:175–187

    Google Scholar 

  • Barazangi M, Isacks BL (1976) Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America. Geology 4:686–692. doi:10.1130/0091-7613(1976)4<686:SDOEAS>2.0.CO;2

    Google Scholar 

  • Barnes J, Ehlers T (2009) End member models for Andean Plateau uplift. Earth Sci Rev 97:105–132

    Google Scholar 

  • Beck SL, Zandt G (2002) The nature of orogenic crust in the central Andes. J Geophys Res 107(B10):ESE7-1–ESE7-16. doi:10.1029/2000JB000124

  • Beck SL, Zandt G, Myers SC, Wallace TC, Silver PG, Drake L (1996) Crustal-thickness variations in the central Andes. Geology 24:407–410

    Google Scholar 

  • Bindeman I (2008) Oxygen isotopes in mantle and crustal magmas as revealed by single crystal analysis. Rev Mineral Geochem 69:445–478

    Google Scholar 

  • Boily M, Ludden JN, Brooks C (1990) Geochemical constraints on the magmatic evolution of the pre- and post-Oligocene volcanic suites of southern Peru: implications for the tectonic evolution of the Central Volcanic Zone. Geol Soc Am Bull 102:1565–1579

    Google Scholar 

  • Brasse H, Eydam D (2008) Electrical conductivity beneath the Bolivian Orocline and its relation to subduction processes at the South American continental margin. J Geophys Res 113:B07109. doi:10.1029/2007JB005142

  • Brasse H, Lezaeta P, Rath V, Schwalenberg K, Soyer W, Haak V (2002) The Bolivian Altiplano conductivity anomaly. J Geophys Res 107:4–10. doi:10.1029/2001JB000391

    Google Scholar 

  • Caffe P, Soler M, Coira B, Onoe A, Cordani U (2008) The Granada ignimbrite: a compound pyroclastic unit and its relationship with Upper Miocene caldera volcanism in the northern Puna. J South Am Earth Sci 25:464–484

    Google Scholar 

  • Cahill T, Isacks BL (1992) Seismicity and shape of the subducted Nazca plate. J Geophys Res 97:17503–17529

    Google Scholar 

  • Chang Y-H (2007) O-Isotopes as tracer for assimilation processes in different magmatic regimes (El Misti, S. Peru and Tapaaca, N. Chile). Georg August Universität Göttingen

  • Chmielowski J, Zandt G, Haberland C (1999) The central Andean Altiplano-Puna magma body. Geophys Res Lett 26:783–786

    Google Scholar 

  • Clavero J, Sparks R, Pringle M, Polanco E, Gardeweg M (2004) Evolution and volcanic hazards of Taapaca Volcanic Complex, Central Andes of Northern Chile. J Geol Soc Lond 161:603–618

    Google Scholar 

  • Coira B, Kay SM, Viramonte J (1993) Upper Cenozoic magmatic evolution of the Argentine Puna—a model for changing subduction geometry. Int Geol Rev 35:677–720

    Google Scholar 

  • Coney PJ (1978) Mesozoic–Cenozoic Cordilleran plate tectonics. In: Smith RB, Eaton GP (eds) Cenozoic tectonics and regional geophysics of the western Cordillera. Geol Soc Am Mem 152:33–50

  • Damm K-W, Pichowiak S, Harmon RS, Todt W, Kelley S, Omarini R, Niemeyer H (1990) Pre-Mesozoic evolution of the central Andes; the basement revisited. Geol Soc Am Spec Paper 241:101–126

    Google Scholar 

  • Davidson JP, Harmon RS, Wörner G (1991) The source of central Andean magmas; some considerations. Geol Soc Am Spec Paper 265:233–244

    Google Scholar 

  • Davidson JP, Hora JM, Garrison JM, Dungan MA (2005) Crustal forensics in arc magmas. J Volcanol Geotherm Res 140:157–170

    Google Scholar 

  • Davidson J, Morgan D, Charlier B, Harlou R, Hora J (2007) Microsampling and isotopic analysis of igneous rocks: implications for the study of magmatic systems. Annu Rev Earth Planet Sci 35:273–311

    Google Scholar 

  • de Silva SL (1989a) Geochronology and stratigraphy of the ignimbrites from the 21.30′S to 23.30′S portion of the Central Andes of northern Chile. J Volcanol Geotherm Res 37:93–131

    Google Scholar 

  • de Silva SL (1989b) Altiplano-Puna volcanic complex of the central Andes. Geology 17:1102–1106

    Google Scholar 

  • de Silva SL, Gosnold WD (2007) Episodic construction of batholiths: insights from the spatiotemporal development of an ignimbrite flare-up. J Volcanol Geotherm Res 167:320–335

    Google Scholar 

  • de Silva S, Zandt G, Trumbull R, Viramonte JG, Salas G, Jimenez N (2006) Large ignimbrite eruptions and volcano-tectonic depressions in the Central Andes: a thermomechanical perspective. Geol Soc Lond Spec Publ 269:47–63

    Google Scholar 

  • Decou A, von Eynatten H, Dunkl I, Frei D, Wörner G (2013) Late Eocene to Early Miocene Andean uplift inferred from detrital zircon fission track and U–Pb dating of Cenozoic forearc sediments (15–18°S). J South Am Earth Sci 45:6–23

    Google Scholar 

  • del Potro R, Díez M, Blundy J, Camacho AG, Gottsmann J (2013) Diapiric ascent of silicic magma beneath the Bolivian Altiplano. Geophys Res Lett 40:2044–2048. doi:10.1002/grl.50493

    Google Scholar 

  • Deniel C (2009) Heterogeneous initial Sr isotope compositions of highly evolved volcanic rocks from the Main Ethiopian Rift, Ethiopia. Bull Volcanol 71:495–508

    Google Scholar 

  • DePaolo DJ (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202

    Google Scholar 

  • Déruelle B, Harmon RS, Moorbath S (1983) Combined Sr–O isotope relationships and petrogenesis of Andean volcanics of South America. Nature 302:814–816

    Google Scholar 

  • Dufek J, Bergantz G (2005) Lower crustal magma genesis and preservation: a stochastic framework for the evaluation of basalt–crust interaction. J Petrol 46:2167–2195

    Google Scholar 

  • Entenmann J (1994) Magmatic evolution of the Nevados de Payachata complex and the petrogenesis of basaltic andesites in the Central Volcanic Zone of northern Chile. PhD dissertation, Universität Mainz, pp 1–188

  • Evans BW, Bachmann O (2013) Implications of equilibrium and disequilibrium among crystal phases in the Bishop Tuff. Am Mineral 98:271–274

    Google Scholar 

  • Farías M, Charrier R, Comte D, Martinod J, Hérail G (2005) Late Cenozoic deformation and uplift of the western flank of the Altiplano: evidence from the depositional, tectonic, and geomorphologic evolution and shallow seismic activity (northern Chile at 19°30′S). Tectonics 24. doi:10.1029/2004TC001667

  • Feeley TC, Sharp ZD (1995) 18O/16O isotope geochemistry of silicic lava flows erupted from Volcan Ollagüe, Andean Central Volcanic Zone. Earth Planet Sci Lett 133:239–254

    Google Scholar 

  • Fialko Y, Pearse J (2012) Sombrero uplift above the altiplano-puna magma body: evidence of a ballooning mid-crustal diapir. Science 338:250–252

    Google Scholar 

  • Folkes C, Wright H, Cas R, de Silva S, Lesti C, Viramonte J (2011) A re-appraisal of the stratigraphy and volcanology of the Cerro Galán volcanic system, NW Argentina. Bull Volcanol 73:1427–1454

    Google Scholar 

  • Folkes CB, de Silva SL, Bindeman IN, Cas RAF (2013) Tectonic and climate history influence the geochemistry of large-volume silicic magmas: new δ18O data from the Central Andes with comparison to N America and Kamchatka. J Volcanol Geotherm Res 262:90–103

    Google Scholar 

  • Francis PW, Sparks RSJ, Hawkesworth CJ, Thorpe RS, Pyle DM, Tait SR, Mantovani MS, McDermott F (1989) Petrology and geochemistry of volcanic rocks of the Cerro Galán caldera, northwest Argentina. Geol Mag 126:515–547

    Google Scholar 

  • García M, Gardeweg M, Clavero J, Hérail G (2004) Hoja Arica, Region de Tarapaca, Carta Geologica de Chile 1:1250000, Servicio Nacional de Geologia y Mineria-Chile, no 84:1–150

  • Gebault M, Martinod J, Herail G (2005) Possible orogeny-parallel lower crustal flow and thickening of the Central Andes. Tectonophysics 399:59–72

    Google Scholar 

  • Ginibre C, Davidson JP (2014) Sr isotope zoning in plagioclase from Parinacota Volcano (Northern Chile): quantifying magma mixing and crustal contamination. J Petrol 55:1203–1238

    Google Scholar 

  • Goss A, Kay S, Mpodozis C, Singer B (2009) The Incapillo Caldera and Dome Complex (28°S, Central Andes): a stranded magma chamber over a dying arc. J Volcanol Geotherm Res 184:389–404

  • Goss AR, Kay SM, Mpodozis C (2013) Andean adakite-like high-Mg andesites on the northern margin of the Chilean–Pampean flat-slab (27–28·5°S) associated with frontal arc migration and fore-arc subduction erosion. J Petrol. doi:10.1093/petrology/egt044

  • Gregory-Wodzicki KM (2000) Uplift history of the Central and Northern Andes: a review. Geol Soc Am Bull 112:1091–1105

    Google Scholar 

  • Harmon RS, Hoefs J (1995) Oxygen isotope heterogeneity of the mantle deduced from global 18O systematics of basalts from different geotectonic settings. Contrib Mineral Petrol 120:95–114

    Google Scholar 

  • Harmon RS, Barreiro BA, Moorbath S, Hoefs J, Francis PW, Thorpe RS, Déruelle B, McHugh J, Viglino JA (1984) Regional O-, Sr-, and Pb-isotope relationships in late Cenozoic calc-alkaline lavas of the Andean Cordillera. J Geol Soc Lond 141:803–822

    Google Scholar 

  • Hartley A, Sempere T, Wörner G (2007) A comment on “Rapid late Miocene rise of the Bolivian Altiplano: evidence for removal of mantle lithosphere” by CN Garzione et al. Earth Planet Sci Lett 241 (2006) 543–556. Earth Planet Sci Lett 259: 625–629

  • Haschke M, Günther A, Melnick D, Echtler H, Reutter K-J, Scheuber E, Oncken O (2006) Central and southern Andean tectonic evolution inferred from arc magmatism. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos V, Strecker M, Wigger P (eds) The Andes. Springer, Berlin Heidelberg

    Google Scholar 

  • Hildreth W (1981) Gradients in silicic magma chambers: implications for lithospheric magmatism. J Geophys Res 86:10153–10192

    Google Scholar 

  • Hildreth W (2004) Volcanological perspectives on Long Valley, Mammoth Mountain, and Mono Craters: several contiguous but discrete systems. J Volcanol Geotherm Res 136:169–198

    Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of Central Chile. Contrib Mineral Petrol 98:455–489

    Google Scholar 

  • Hindle D, Kley J, Sobolev S (2005) Crustal balance and crustal flux from shortening estimates in the Central Andes. Earth Plnanet Sci Lett 230:113–124

    Google Scholar 

  • Hora JM, Singer BS, Wörner G (2007) Volcano evolution and eruptive flux on the thick crust of the Andean Central Volcanic Zone: 40Ar/39Ar constraints from Volcán Parinacota, Chile. Geol Soc Am Bull 119:343–362

    Google Scholar 

  • Hora J, Singer B, Wörner G, Beard BL, Jicha BR, Johnson CM (2009) Shallow reservoir and deep crustal control on differentiation of calc-alkaline and tholeiitic magmas. Earth Planet Sci Lett 28:75–86

    Google Scholar 

  • Isacks B (1988) Uplift of the Central Andean plateau and bending of the Bolivian orocline. J Geophys Res 93:3211–3231

    Google Scholar 

  • James DE (1982) A combined O, Sr, Nd, and Pb isotopic and trace element study of crustal contamination in central Andean lavas, I. Local geochemical variations. Earth Planet Sci Lett 57:47–62

    Google Scholar 

  • Kay SM, Coira BL (2009) Shallowing and steepening subduction zones, continental lithospheric loss, magmatism, and crustal flow under the Central Andean Altiplano-Puna Plateau. Geol Soc Am Mem 204:229–259

    Google Scholar 

  • Kay RW, Kay SM (2002) Andean adakites: three ways to make them. Acta Petrol Sin 18:303–322

    Google Scholar 

  • Kay SM, Maksaev V, Moscoso R, Mpodozis C, Nasi C (1987) Probing the evolving Andean Lithosphere: mid-Late Tertiary magmatism in Chile (29°–30°30′S) over the modern zone of subhorizontal subduction. J Geophys Res 92:6173–6189

    Google Scholar 

  • Kay SM, Coira B, Viramonte J (1994) Young mafic back arc volcanic rocks as indicators of continental lithospheric delamination beneath the Argentine Puna Plateau, central Andes. J Geophys Res 99:24323–24339

    Google Scholar 

  • Kay SM, Coira BL, Caffe PJ, Chen C-H (2010) Regional chemical diversity, crustal and mantle sources and evolution of central Andean Puna plateau ignimbrites. J Volcanol Geotherm Res 198:81–111

    Google Scholar 

  • Kay S, Coira B, Wörner G, Kay R, Singer B (2011) Geochemical, isotopic and single crystal 40Ar/39Ar age constraints on the evolution of the Cerro Galán ignimbrites. Bull Volcanol 73:1–25  

    Google Scholar 

  • Kley J, Monaldi CR (1998) Tectonic shortening and crustal thickness in the Central Andes: How good is the correlation? Geology 26:723–726. doi:10.1130/0091-7613(1998)026<0723:TSACTI>2.3.CO;2

  • Kohlbach I (1999) Spatial and temporal variations in magma geochemistry along a W–E traverse at 18°–19°S, North Chile. Diploma thesis, Universität Göttingen, pp 1–88

  • Kraemer B, Adelmann D, Alten M, Schnurr W, Erpenstein K, Kiefer E, van den Bogaard P, Görler K (1999) Incorporation of the Paleogene foreland into the Neogene Puna plateau: the Salar de Antofalla area, NW Argentina. J S Am Earth Sci 12:157–182

    Google Scholar 

  • Lamb S, Davis P (2003) Cenozoic climate change as a possible cause for the rise of the Andes. Nature 425:792–797

    Google Scholar 

  • Leidig M, Zandt G (2003) Modeling of highly anisotropic crust and application to the Altiplano-Puna volcanic complex of the central Andes. J Geophys Res Solid Earth 108(B1). doi:10.1029/2001JB000649

    Google Scholar 

  • Lindsay JM, Schmitt AK, Trumbull RB, de Silva SL, Siebel W, Emmermann R (2001) Magmatic evolution of the La Pacana Caldera System, Central Andes, Chile: compositional variation of two cogenetic, large-volume felsic ignimbrites. J Petrol 42:459–486

    Google Scholar 

  • Lipman PW (2007) Incremental assembly and prolonged consolidation of Cordilleran magma chambers: evidence from the Southern Rocky Mountain volcanic field. Geosphere 3:42–70

    Google Scholar 

  • Lipman PW, Glazner AF (1991) Introduction to Middle Tertiary Cordilleran volcanism: magma sources and relations to regional tectonics. J Geophys Res 96:13193–13199

    Google Scholar 

  • Lohnert E (1999) Chemical variations of a sanidine megacryst and its implications on the pre-eruptive evolution of the Taapaca volcano in North Chile: Electron microprobe and Sr-isotope studies: Diploma Thesis. Georg August Universität Göttingen, Germany

  • Magaritz M, Whitford D, James D (1978) Oxygen isotopes and the origin of high-87Sr/86Sr andesites. Earth Planet Sci Lett 40:220–230

    Google Scholar 

  • Mamani M, Tassara A, Wörner G (2008) Composition and structural control of crustal domains in the central Andes. Geochem Geophy Geosyst 9. doi:10.1029/2007GC001925

  • Mamani M, Wörner G, Sempere T (2010) Geochemical variations in igneous rocks of the Central Andean orocline (13°S to 18°S): tracing crustal thickening and magma generation through time and space. Geol Soc Am Bull 122:162–182

    Google Scholar 

  • Matsuhisa Y (1979) Oxygen isotopic compositions of volcanic rocks from the east Japan island arcs and their bearing on petrogenesis. J Volcanol Geotherm Res 5:271–296

    Google Scholar 

  • Matthews SJ, Gardeweg MC, Sparks RSJ (1997) The 1984 to 1996 cyclic activity of Lascar Volcano, Northern Chile; cycles of dome growth, dome subsidence, degassing and explosive eruptions. Bull Volcanol 59:72–82

    Google Scholar 

  • McMillan N, Davidson J, Wörner G, Harmon RS, Lopez-Escobar L, Moorbath S (1993) Mechanism of trace element enrichment related to crustal thickening: the Nevados de Payachata Region, Northern Chile. Geology 21:467–470

    Google Scholar 

  • Mulcahy P, Chen C, Kay SM, Brown LD, Isacks BL, Sandvol E, Heit B, Yuan XH, Coira BL (2014) Central Andean mantle and crustal seismicity beneath the Southern Puna plateau and the northern margin of the Chilean-Pampean flat slab. Tectonics 33:1636–1658

    Google Scholar 

  • Müntener O, Ulmer P (2006) Experimentally derived high-pressure cumulates from hydrous arc magmas and consequences for the seismic velocity structure of island arc crust. Geophys Res Lett 33. doi:10.1029/2006GL027629

  • Noble DC, McKee EH, Ferrar E, Petersen U (1974) Episodic volcanism and tectonism in the Andes of Peru. Earth Planet Sci Lett 21:213–220

    Google Scholar 

  • Noble DC, Farrar E, Cobbing EJ (1979) The Nazca Group of south-central Peru: age, source, and regional volcanic and tectonic significance. Earth Planet Sci Lett 45:80–86

    Google Scholar 

  • Oncken O, Hindle D, Kley J, Elger K, Victor P, Schemmann K (2006) Deformation of the Central Andean upper plate system—facts, fiction, and constraints for plateau models. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes. Springer, Berlin

    Google Scholar 

  • Ort MH, Coira B, Mazzoni MM (1996) Generation of a crust–mantle magma mixture: mama sources and contamination at Cerro Panizios, central Andes. Contrib Mineral Petrol 123:308–322

    Google Scholar 

  • Paquereau-Lebti P, Thouret JC, Wörner G, Fornari M, Macedo O (2006) Neogene and Quaternary ignimbrites in the area of Arequipa, southern Peru: stratigraphical and petrological correlations. J Volcanol Geotherm Res 154:251–275

    Google Scholar 

  • Petrinovic I, Martí J, Aguirre-Díaz G, Guzmán S, Geyer A, Paz NS (2010) The Cerro Aguas Calientes caldera, NW Argentina: an example of a tectonically controlled, polygenetic collapse caldera, and its regional significance. J Volcanol Geotherm Res 194:15–26

    Google Scholar 

  • Pinto L, Herail G, Fontan F, de Parseval P (2007) Neogene erosion and uplift of the western edge of the Andean Plateau as determined by detrital heavy mineral analysis. Sediment Geol 195:217–237

    Google Scholar 

  • Quang CX, Clark AH, Lee JKW, Hawkes N (2005) Response of supergene processes to episodic cenozoic uplift, pediment erosion, and ignimbrite eruption in the porphyry copper province of southern Peru. Econ Geol 100:87–114

    Google Scholar 

  • Reymer A, Schubert G (1984) Phanerozoic addition rates to the continental crust and crustal growth. Tectonics 3:63–77

    Google Scholar 

  • Richards JP, Villeneuve M (2002) Characteristics of late Cenozoic volcanism along the Archibarca lineament from Cerro Llullaillaco to Corrida de Cori, northwest Argentina. J Volcanol Geotherm Res 116:161–200

    Google Scholar 

  • Richards JP, Ullrich T, Kerrich R (2006) The Late Miocene-Quaternary Antofalla volcanic complex, southern Puna, NW Argentina: protracted history, diverse petrology, and economic potential. J Volcanol Geotherm Res 152:197–239

    Google Scholar 

  • Rogers G, Hawkesworth CJ (1989) A geochemical traverse across the North Chilean Andes: evidence for crust generation from the mantle wedge. Earth Planet Sci Lett 91:271–285

    Google Scholar 

  • Salisbury MJ, Jicha BR, de Silva SL, Singer BS, Jiménez NC, Ort MH (2011) 40Ar/39Ar chronostratigraphy of Altiplano-Puna volcanic complex ignimbrites reveals the development of a major magmatic province. Geol Soc Am Bull 123:821–840

    Google Scholar 

  • Saylor JE, Horton BK (2014) Nonuniform surface uplift of the Andean plateau revealed by deuterium isotopes in Miocene volcanic glass from southern Peru. Earth Planet Sci Lett 387:120–131. doi:10.1016/j.epsl.2013.11.015

    Google Scholar 

  • Schildgen TF, Hodges KV, Whipple KX, Pringle MS, van Soest M, Cornell K (2009a) Late Cenozoic structural and tectonic development of the western margin of the central Andean Plateau in southwest Peru. Tectonics 28:1–21

    Google Scholar 

  • Schildgen T, Ehlers TA, Whipp DM, van Soest MC, Whipple KX, Hodges KV (2009b) Quantifying canyon incision and Andean Plateau surface uplift, southwest Peru: a thermochronometer and numerical modeling approach. J Geophys Res 114. doi:10.1029/2009JF001305

  • Schnurr W, Trumbull R, Clavero J, Hahne K, Siebel W, Gardeweg M (2007) Twenty-five million years of silicic volcanism in the southern central volcanic zone of the Andes: geochemistry and magma genesis of ignimbrites from 25 to 27°S, 67 to 72°W. J Volcanol Geotherm Res 166:17–46. doi:10.1016/j.jvolgeores.2007.06.005

    Google Scholar 

  • Siebel W, Schnurr WB, Hahne K, Kraemer B, Trumbull RB, van den Bogaard P, Emmermann R (2001) Geochemistry and isotope systematics of small- to medium-volume Neogene–Quaternary ignimbrites in the southern central Andes: evidence for derivation from andesitic magma sources. Chem Geol 171:213–237

    Google Scholar 

  • Solano JMS, Jackson MD, Sparks RSJ, Blundy JD, Annen C (2012) Melt segregation in deep crustal hot zones: a mechanism for chemical differentiation, crustal assimilation and the formation of evolved magmas. J Petrol 10:1999–2026. doi:10.1093/petrology/egs041

    Google Scholar 

  • Soler M, Caffe P, Coira B, Onoe A, Kay SM (2007) Geology of the Vilama caldera: a new interpretation of a large-scale explosive event in the Central Andean plateau during the Upper Miocene. J Volcanol Geotherm Res 164:27–53

    Google Scholar 

  • Sparks R, Francis P, Hamer R, Pankhurst R, O’Callaghan L, Thorpe R, Page R (1985) Ignimbrites of the Cerro Galán Caldera, NW Argentina. J Volcanol Geotherm Res 24:205–248

    Google Scholar 

  • Thorpe R, Francis P, Moorbath S (1979) Rare earth and strontium isotope evidence concerning the petrogenesis of North Chilean ignimbrites. Earth Planet Sci Lett 42:359–367

    Google Scholar 

  • Thouret J-C, Finizola A, Fornari M, Legeley-Padovani A, Suni J, Frechen M (2001) Geology of El Misti volcano near the city of Arequipa, Peru. Geol Soc Am Bull 113:1593–1610

    Google Scholar 

  • Thouret J-C, Wörner G, Gunnell Y, Singer B, Zhang X, Souriot T (2007) Geochronologic and stratigraphic constraints on canyon incision and Miocene uplift of the Central Andes in Peru. Earth Planet Sci Lett 263:151–166

    Google Scholar 

  • Tosdal RM, Farrar E, Clark AH (1981) K–Ar geochronology of the late Cenozoic volcanic rocks of the Cordillera Occidental, southernmost Peru. J Volcanol Geotherm Res 10:157–173

    Google Scholar 

  • Tosdal RM, Clark AH, Farrar E (1985) Cenozoic polyphase landscape and tectonic evolution of the Cordillera Occidental, southernmost Peru. Geol Soc Am Bull 95:1318–1332

    Google Scholar 

  • Trumbull RB, Wittenbrink R, Hahne K, Emmermann R, Büsch W, Gerstenberger H, Siebel W (1999) Evidence for Late Miocene to Recent contamination of arc andesites by crustal melts in the Chilean Andes (25–26°S) and its geodynamic implications. J S Am Earth Sci 12:135–155

    Google Scholar 

  • Victor P, Oncken O, Glodny J (2004) Uplift of the western Altiplano plateau: evidence from the Precordillera between 20° and 21° (northern Chile). Tectonics 23. doi:10.1029/2003TC001519

  • Ward K, Zandt G, Beck SL, Christensen DH, McFarlin H (2014) Seismic imaging of the magmatic underpinnings beneath the Altiplano-Puna volcanic complex from the joint inversion of surface wave dispersion and receiver functions. Earth Planet Sci Lett 404:43–53

    Google Scholar 

  • White SM, Crisp JA, Spera FJ (2006) Long-term volumetric eruption rates and magma budgets. Geochem Geophys Geosys 7. doi:10.1029/2005GC001002

    Google Scholar 

  • Woodhead JD, Harmon RS, Fraser DG (1987) O, S, Sr, and Pb isotope variations in volcanic rocks from the Northern Mariana Islands: implications for crustal recycling in intra-oceanic arcs. Earth Planet Sci Lett 83:39–52

    Google Scholar 

  • Wörner G, Harmon RS, Davidson J et al (1988) The Nevados de Payachata volcanic region (18°S/69°W, N. Chile). Bull Volcanol 50:287–303

    Google Scholar 

  • Wörner G, Hammerschmidt K, Henjes-Kunst F, Lezaun J, Wilke H (2000a) Geochronology (40Ar/39Ar, K-Ar and He-exposure ages) of Cenozoic magmatic rocks from Northern Chile (18–22°): implications for magmatism and tectonic evolution of the central Andes. Rev Geol Chile 27:205–240

    Google Scholar 

  • Wörner G, Lezaun J, Beck A, Heber V, Lucassen F, Zinngrebe E, Rössling R, Wilke HG (2000b) Precambrian and Early Paleozoic evolution of the Andean basement at Belen (northern Chile) and Cerro Uyarani (western Bolivia Altiplano). J S Am Earth Sci 13:717–737

    Google Scholar 

  • Wörner G, Uhlig D, Kohler I, Seyfried H (2002) Evolution of the West Andean Escarpment at 18°S (N. Chile) during the last 25 Ma: uplift, erosion and collapse through time. Tectonophysics 345:183–198

    Google Scholar 

  • Wotzlaw JF, Decou A, von Eynatten H, Wörner G, Frei D (2011) Jurassic to Palaeogene tectono-magmatic evolution of northern Chile and adjacent Bolivia from detrital zircon U–Pb geochronology and heavy mineral provenance. Terra Nova 23:399–406

    Google Scholar 

  • Yuan X, Sobolev S, Kind R (2002) Moho topography in the central Andes and its geodynamic implications. Earth Planet Sci Lett 199:389–402

    Google Scholar 

  • Zandt G, Leidig M, Chmielowski J, Baumont D, Yuan X (2003) Seismic detection and characterization of the Altiplano-Puna magma body, Central Andes. Pure Appl Geophys 160:789–807

    Google Scholar 

Download references

Acknowledgments

This project was partially funded by DFG project Wo 362/43-1. HF was funded by a University of Bristol Postgraduate Research Scholarship during part of this study. Field work by HF was partially supported by the DAAD and Universitätsbund der Universität Göttingen. Previously unpublished data from the PhD thesis of J. Entenmann and a master's thesis by Y. H. Chang were included in our compilation and their analytical effort is greatly appreciated. G. Hartman, A. Pack, and R Przybilla supported our analytical work. We thank Sue Kay, Matt Loewen, and an anonymous reviewer for their substantial and helpful comments and critical remarks on an earlier version which improved this manuscript significantly and also encouraged us to widen its scope. Othmar Müntener's efforts as editor and his constructive remarks are also much acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heye Freymuth.

Additional information

Communicated by Othmar Müntener.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 134 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freymuth, H., Brandmeier, M. & Wörner, G. The origin and crust/mantle mass balance of Central Andean ignimbrite magmatism constrained by oxygen and strontium isotopes and erupted volumes. Contrib Mineral Petrol 169, 58 (2015). https://doi.org/10.1007/s00410-015-1152-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-015-1152-5

Keywords

Navigation