Skip to main content

Advertisement

Log in

The effect of deformation on the TitaniQ geothermobarometer: an experimental study

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We performed high strain (up to 47 %) axial compression experiments on natural quartz single crystals with added rutile powder (TiO2) and ~0.2 wt% H2O to investigate the effects of deformation on the titanium-in-quartz (TitaniQ) geothermobarometer. One of the objectives was to study the relationships between different deformation mechanisms and incorporation of Ti into recrystallized quartz grains. Experiments were performed in a Griggs-type solid-medium deformation apparatus at confining pressures of 1.0–1.5 GPa and temperatures of 800–1,000 °C, at constant strain rates of 1 × 10−6 or 1 × 10−7 s−1. Mobility of Ti in the fluid phase and saturation of rutile at grain boundaries during the deformation experiments are indicated by precipitation of secondary rutile in cracks and along the grain boundaries of newly recrystallized quartz grains. Microstructural analysis by light and scanning electron microscopy (the latter including electron backscatter diffraction mapping of grain misorientations) shows that the strongly deformed quartz single crystals contain a wide variety of deformation microstructures and shows evidence for subgrain rotation (SGR) and grain boundary migration recrystallization (GBMR). In addition, substantial grain growth occurred in annealing experiments after deformation. The GBMR and grain growth are evidence of moving grain boundaries, a microstructure favored by high temperatures. Electron microprobe analysis shows no significant increase in Ti content in recrystallized quartz grains formed by SGR or by GBMR, nor in grains grown by annealing. This result indicates that neither SGR nor moving grain boundaries during GBMR and grain growth are adequate processes to facilitate re-equilibration of the Ti content in experimentally deformed quartz crystals at the investigated conditions. More generally, our results suggest that exchange of Ti in quartz at low H2O contents (which may be realistic for natural deformation conditions) is still not fully understood. Thus, the application of the TitaniQ geothermobarometer to deformed metamorphic rocks at low fluid contents may not be as straightforward as previously thought and requires further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adachi T, Hokada T, Osanai Y, Toyoshima T, Baba S, Nakano N (2010) Titanium behavior in quartz during retrograde hydration: occurrence of rutile exsolution and implications for metamorphic processes in the Sør Rondane Mountains, East Antarctica. Polar Sci 3:222–234. doi:10.1016/j.polar.2009.08.005

    Article  Google Scholar 

  • Adams BL, Wright SI, Kunze K (1993) Orientation imaging: the emergence of a new microscopy. Metall Trans A 24:819–831

    Article  Google Scholar 

  • Baeta RD, Ashbee KH (1969a) Slip system in quartz: I experiments. Am Mineral 54:1551–1573

    Google Scholar 

  • Baeta RD, Ashbee KH (1969b) Slip system in quartz: II interpretation. Am Mineral 54:1574–1582

    Google Scholar 

  • Barker AK, Coogan LA, Gillis KM, Hayman NW, Weis D (2010) Direct observation of a fossil high-temperature, fault-hosted, hydrothermal upflow zone in crust formed at the East Pacific Rise. Geology 38:379–382. doi:10.1130/G30542.1

    Article  Google Scholar 

  • Bastin GF, Van Loo FJJ, Vosters PJC, Vrolijk JWGA (1984) An iterative procedure for the correction of secondary fluorescence effects in electron-probe microanalysis near phase boundaries. Spectrochim Acta B 39:1517–1522. doi:10.1016/0584-8547(84)80174-3

    Article  Google Scholar 

  • Blacic JD, Christie JM (1984) Plasticity and hydrolytic weakening of quartz single crystals. J Geophys Res 89:4223–4239

    Article  Google Scholar 

  • Campbell ME, Hanson JB, Minarik WG, Stix J (2009) Thermal history of the bandelier magmatic system: evidence for magmatic injection and recharge at 1.61 Ma as revealed by cathodoluminescence and titanium geothermometry. J Geol 117:469–485. doi:10.1086/604744

    Article  Google Scholar 

  • Cherniak DJ, Watson BE, Wark DA (2007) Ti diffusion in quartz. Chem Geol 236:65–74. doi:10.1016/j.chemgeo.2006.09.001

    Article  Google Scholar 

  • Derby B (1991) The dependence of grain size on stress during dynamic recrystallization. Acta Metall 39:955–962

    Article  Google Scholar 

  • Donovan JJ, Lowers HA, Rusk BG (2011) Improved electron probe microanalysis of trace elements in quartz. Am Mineral 96:274–282. doi:10.2138/am2011.3631

    Article  Google Scholar 

  • Drury MR, Urai JL (1990) Deformation-related recrystallization processes. Tectonophysics 172:235–253

    Article  Google Scholar 

  • Evans B, Hay RS, Shimizu N (1986) Diffusion-induced grain-boundary migration in calcite. Geology 14:60–63. doi:10.1130/0091-7613(1986)14<60

    Article  Google Scholar 

  • Flem B, Larsen RB, Grimstvedt A, Mansfeld J (2002) In situ analysis of trace elements in quartz by using laser ablation inductively coupled plasma mass spectrometry. Chem Geol 182:237–247. doi:10.1016/S0009-2541(01)00292-3

    Article  Google Scholar 

  • Fournelle J (2007) Problems in trace elements EMPA: modeling secondary fluorescence with PENEPMA. EOS transactions American Geophysical Union 88:52. Abstract V51A-0329

  • Frondel C (1962) Silica Minerals. In: Dana JD, Dana ES (eds) The system of mineralogy. Wiley, New York

    Google Scholar 

  • Fynn GW, Powell WJA (1979) The cutting and polishing of electro-optical minerals. Adams Higer, London, p 216

    Google Scholar 

  • Girard G, Stix J (2010) Rapid extraction of discrete magma batches from a large differentiating magma chamber: the Central Plateau Member rhyolites, Yellowstone Caldera, Wyoming. Contrib Miner Petrol 160:441–465. doi:10.1007/s00410-009-0487-1

    Article  Google Scholar 

  • Gottstein G, Mecking H (1985) Recrystallization. In: Wenk HR (ed) Preferred orientation in deformed metals and rocks: an introduction to modern texture analysis. Academic Press, Orlando, pp 183–218

    Chapter  Google Scholar 

  • Griggs D, Blacic JD (1964) The strength of quartz in the ductile regime. Transactions American Geophysical Union 45:102–103

    Google Scholar 

  • Griggs D (1967) Hydrolytic weakening of quartz and other silicates. Geophys J Roy Astron Soc 14:19–31

    Article  Google Scholar 

  • Grujic D, Stipp M, Wooden JL (2011) Thermometry of quartz mylonites: importance of dynamic recrystallization on Ti-in-quartz reequilibration. Geochem Geophys Geosyst 12:1–19. doi:10.1029/2010GC003368

    Article  Google Scholar 

  • Guillope M, Poirier JP (1979) Dynamic recrystallization during creep of single-crystalline halite: an experimental study. J Geophys Res 84:5557–5567

    Article  Google Scholar 

  • Härtel M, Herweg M (2013) Titanium-in-quartz thermometry on synkinematic quartz veins in a retrograde crustal-scale normal fault zone. Tectonophysics 608:468–481

    Article  Google Scholar 

  • Hay RS, Evans B (1987a) Chemically induced migration in low and high angle calcite grain boundaries. Acta Metall 35:2049–2062

    Article  Google Scholar 

  • Hay RS, Evans B (1987b) Chemically induced grain boundary migration in calcite: temperature dependence, phenomenology, and possible applications to geologic systems. Contrib Miner Petrol 97:127–141

    Article  Google Scholar 

  • Hayden LA, Watson BE (2007) Rutile saturation in hydrous siliceous melts and its bearing on Ti-thermometry of quartz and zircon. Earth Planet Sci Lett 258:561–568. doi:10.1016/j.epsl.2007.04.020

    Article  Google Scholar 

  • Hermann J, O’Neill HSC, Berry AJ (2005) Titanium solubility in olivine in the system TiO2–MgO–SiO2: no evidence for an ultra-deep origin of Ti-bearing olivine. Contrib Miner Petrol 148:746–760. doi:10.1007/s00410-004-0637-4

    Article  Google Scholar 

  • Hirth G, Tullis J (1992) Dislocation creep regimes in quartz aggregates. J Struct Geol 14:145–159. doi:10.1016/0191-8141(92)90053-Y

    Article  Google Scholar 

  • Hirth G, Teyssier C, Dunlap J (2001) An evaluation of quartzite flow laws based on comparisons between experimentally and naturally deformed rocks. Int J Earth Sci 90:77–87. doi:10.1007/s005310000152

    Article  Google Scholar 

  • Huang R, Audétat A (2011) A critical look at the titanium-in-quartz (TitaniQ) thermobarometer. Mineralogical Magazine Goldschmidt Abstract p 1065

  • Huang R, Audétat A (2012) The titanium-in-quartz (TitaniQ) thermobarometer: a critical examination and re-calibration. Geochim Cosmochim Acta 84:75–89. doi:10.1016/j.gca.2012.01.009

    Article  Google Scholar 

  • Jacamon F, Larsen RB (2009) Trace element evolution of quartz in the charnockitic Kleivan granite, SW-Norway: the Ge/Ti ratio of quartz as an index of igneous differentiation. Lithos 107:281–291. doi:10.1016/j.lithos.2008.10.016

    Article  Google Scholar 

  • Jessell MW (1987) Grain-boundary migration microstructures in a naturally deformed quartzite. J Struct Geol 9:1007

    Article  Google Scholar 

  • Kawasaki T, Osanai Y (2008) Empirical thermometer of TiO2 in quartz for ultrahigh-temperature granulites of East Antarctica. Geol Soc Lond Spec Publ 308:419–430. doi:10.1144/SP308.21

    Article  Google Scholar 

  • Kohn MJ, Northrup CJ (2009) Taking mylonites’ temperatures. Geology 37:47–50. doi:10.1130/G25081A.1

    Article  Google Scholar 

  • Larsen RB, Henderson I, Ihlen PM, Jacamon F (2004) Distribution and petrogenetic behaviour of trace elements in granitic pegmatite quartz from South Norway. Contrib Miner Petrol 147:615–628. doi:10.1007/s00410-004-0580-4

    Article  Google Scholar 

  • Martin JJ, Armington AF (1983) Effect of growth rate on quartz defects. J Cryst Growth 62:203–206

    Article  Google Scholar 

  • Menegon L, Nasipuri P, Stünitz H, Behrens H, Ravna E (2011) Dry and strong quartz during deformation of the lower crust in the presence of melt. J Geophys Res 116:1–23. doi:10.1029/2011JB008371

    Google Scholar 

  • Ostapenko GT, Tarashchan AN, Mitsyuk BM (2007) Rutile-quartz geothermobarometer. Geochem Int 45:506–508. doi:10.1134/S0016702907050084

    Article  Google Scholar 

  • Pec M, Stünitz H, Heilbronner R (2011) Semi-brittle deformation of granitoid gouges in shear experiments at elevated pressures and temperatures. J Struct Geol 1–22. doi:10.1016/j.jsg.2011.09.001

  • Pennacchioni G, Menegon L, Leiss B, Nestola F, Bromiley G (2010) Development of crystallographic preferred orientation and microstructure during plastic deformation of natural coarse-grained quartz veins. J Geophys Res. doi:10.1029/2010JB007674

    Google Scholar 

  • Perkins D (2002) Mineralogy, 2nd edn. Prentice Hall Publishers, New Jersey

    Google Scholar 

  • Poirier J (1985) Creep of crystals. Cambridge University Press, New York

    Book  Google Scholar 

  • Prior DJ, Boyle AP, Brenker F, Cheadle MC, Austin D, Lopez G, Peruzzo L, Potts GJ, Reddy S, Spiess R, Timms NE, Trimby PW, Wheeler J, Zetterström L (1999) The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks. Am Mineral 84:1741–1759

    Google Scholar 

  • Rankama K, Sahama TG (1950) Geochemistry. University of Chicago Press, Chicago

    Google Scholar 

  • Rossi M, Rolland Y, Vidal O, Cox SF (2005) Geochemical variations and element transfer during shear-zone development and related episyenites at middle crust depths: insights from the Mont Blanc granite (French—Italian Alps). Geol Soc Lond Spec Publ 245:373–396. doi:10.1144/GSL.SP.2005.245.01.18

    Article  Google Scholar 

  • Rusk BG (2006) Intensity of quartz cathodoluminescence and trace-element content in quartz from the porphyry copper deposit at Butte, Montana. Am Mineral 91:1300–1312. doi:10.2138/am 2006.1984

    Article  Google Scholar 

  • Rusk BG, Lowers HA, Reed MH (2008) Trace elements in hydrothermal quartz: relationships to cathodoluminescent textures and insights into vein formation. Geology 36:547. doi:10.1130/G24580A.1

    Article  Google Scholar 

  • Sato K, Santosh M (2007) Titanium in quartz as a record of ultrahigh-temperature metamorphism: the granulites of Karur, southern India. Mineral Mag 71:143–154. doi:10.1180/minmag.2007.071.2.143

    Article  Google Scholar 

  • Sinha AK, Hewitt DA, Rimstidt JD (1986) Fluid interaction and element mobility in the development of ultramylonites. Geology 14:883–886. doi:10.1130/0091-7613(1986)14<883

    Article  Google Scholar 

  • Smith V, Shane P, Nairn I (2010) Insights into silicic melt generation using plagioclase, quartz and melt inclusions from the caldera-forming Rotoiti eruption, Taupo volcanic zone, New Zealand. Contrib Miner Petrol 160:951–971. doi:10.1007/s00410-010-0516-0

    Article  Google Scholar 

  • Spear FS, Wark DA (2009) Cathodoluminescence imaging and titanium thermometry in metamorphic quartz. J Metamorph Geol 27:187–205. doi:10.1111/j.1525-1314.2009.00813.x

    Article  Google Scholar 

  • Stipp M, Tullis J (2003) The recrystallized grain size piezometer for quartz. Geophys Res Lett 30:1–5. doi:10.1029/2003GL018444

    Article  Google Scholar 

  • Stipp M, Stünitz H, Heilbronner R, Schmid SM (2002a) Dynamic recrystallization of quartz: correlation between natural and experimental deformation conditions. In: de Meer S, Drury MR, Bresser JHP, Pennock GM (eds) Deformation mechanisms, rheology and tectonics: current status and future perspectives. Special Publication, Geological Society, London 200:171–190

  • Stipp M, Stünitz H, Heilbronner R, Schmid SM (2002b) The eastern Tonale fault zone: a “natural laboratory” for crystal plastic deformation of quartz over a temperature range from 250 to 700 °C. J Struct Geol 24:1861–1884

    Article  Google Scholar 

  • Stipp M, Tullis J, Behrens H (2006) Effect of water on the dislocation creep microstructure and flow stress of quartz and implications for the recrystallized grain size piezometer. J Geophys Res 111:B04201. doi:10.1029/2005JB003852

    Google Scholar 

  • Stipp M, Tullis J, Scherwath M, Behrmann JH (2010) A new perspective on paleopiezometry: dynamically recrystallized grain size distributions indicate mechanism changes. Geology 38:759–762. doi:10.1130/G31162.1

    Article  Google Scholar 

  • Storm LC, Spear FS (2009) Application of the titanium-in-quartz thermometer to pelitic migmatites from the Adirondack Highlands, New York. J Metamorph Geol 27:479–494. doi:10.1111/j.1525-1314.2009.00829.x

    Article  Google Scholar 

  • Stünitz H (1998) Syndeformational recrystallization: dynamic or compositionally induced? Contrib Miner Petrol 131:219–236

    Article  Google Scholar 

  • Stünitz H, Fitz Gerald JD, Tullis J (2003) Dislocation generation, slip systems, and dynamic recrystallization in experimentally deformed plagioclase single crystals. Tectonophysics 372:215–233. doi:10.1016/S0040-1951(03)00241-5

    Article  Google Scholar 

  • Tarantola A, Diamond LW, Stünitz H (2010) Modification of fluid inclusions in quartz by deviatoric stress I: experimentally induced changes in inclusion shapes and microstructures. Contrib Miner Petrol 160:825–843. doi:10.1007/s00410-010-0509-z

    Article  Google Scholar 

  • Tarantola A, Diamond LW, Stünitz H, Thust A, Pec M (2012) Modification of fluid inclusions in quartz by deviatoric stress. III: influence of principal stresses on inclusion density and orientation. Contrib Miner Petrol. doi:10.1007/s00410-012-0749-1

    Google Scholar 

  • Thomas JB, Watson BE (2012) Application of the Ti-in-quartz thermobarometer to rutile-free systems. Reply to: a comment on: “TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in quartz” by Thomas et al. Contrib Miner Petrol. doi:10.1007/s00410-012-0761-5

    Google Scholar 

  • Thomas JB, Watson BE, Spear FS, Shemella PT, Nayak SK, Lanzirotti A (2010) TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in quartz. Contrib Miner Petrol 160:743–759. doi:10.1007/s00410-010-0505-3

    Article  Google Scholar 

  • Thust A, Tarantola A, Stünitz H, Heilbronner R, Behrens H, Fitz Gerald JD (2012) Water redistribution in experimentally deformed natural quartz single crystals. PhD Thesis at university of Basel, Switzerland

  • Tullis TE, Tullis J (1986) Experimental rock deformation techniques. In: Hobbs BE, Heard HC (eds) Mineral and rock deformation: laboratory studies. Geophys Monogr Ser 36:297–324. AGU, Washington. doi:10.1029/GM036p0297

  • Urai JL, Means WD, Lister GS (1986) Dynamic recrystallization of minerals. In: Hobbs E, Heard HC (eds) Mineral and rock deformation: laboratory studies. Geophys Monogr Ser 36:161–199 AGU, Washington. doi:10.1029/GM036p0161

  • Vazquez JA, Kyriazis SF, Reid MR, Sehler RC, Ramos FC (2009) Thermochemical evolution of young rhyolites at Yellowstone: evidence for a cooling but periodically replenished postcaldera magma reservoir. J Volcanol Geoth Res 188:186–196. doi:10.1016/j.jvolgeores.2008.11.030

    Article  Google Scholar 

  • Vernooij MGC, Kunze K, Den Brok B (2006a) “Brittle” shear zones in experimentally deformed quartz single crystals. J Struct Geol 28:1292–1306. doi:10.1016/j.jsg.2006.03.018

    Article  Google Scholar 

  • Vernooij MGC, Den Brok B, Kunze K (2006b) Development of crystallographic preferred orientations by nucleation and growth of new grains in experimentally deformed quartz single crystals. Tectonophysics 427:35–53. doi:10.1016/j.tecto.2006.06.008

    Article  Google Scholar 

  • Wark DA, Watson BE (2006) TitaniQ: a titanium-in-quartz geothermometer. Contrib Miner Petrol 152:743–754. doi:10.1007/s00410-006-0132-1

    Article  Google Scholar 

  • Wark DA, Hildreth W, Spear FS, Cherniak DJ, Watson BE (2007) Pre-eruption recharge of the Bishop magma system. Geology 35:235. doi:10.1130/G23316A.1

    Article  Google Scholar 

  • Watson BE (2004) A conceptual model for near-surface kinetic controls on the trace-element and stable isotope composition of abiogenic calcite crystals. Geochim Cosmochim Acta 68:1473–1488. doi:10.1016/j.gca.2003.10.003

    Article  Google Scholar 

  • Watson BE, Liang Y (1995) A simple model for sector zoning in slowly grown crystals: implications for growth rate and lattice diffusion, with emphasis on accessory minerals in crustal rocks. Am Mineral 80:1179–1187

    Google Scholar 

  • Wheeler J, Prior DJ, Jiang Z, Spiess R, Trimby PW (2001) The petrological significance of misorientations between grains. Contrib Miner Petrol 141:109–124. doi:10.1007/s004100000225

    Article  Google Scholar 

  • White S (1976) The effects of strain on the microstructures, fabrics, and deformation mechanisms in quartzites. Philos Trans R Soc Lond 283:69–86

    Article  Google Scholar 

  • Wilson CJN, Seward TM, Allan ASR, Charlier BLA, Bello L (2012) A comment on: “TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in quartz”, by Jay B. Thomas, E. Bruce Watson, Frank S. Spear, Philip T. Shemella, Saroj K. Nayak and Antonio Lanzirotti. Contrib Miner Petrol. doi:10.1007/s00410-012-0757-1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianne Negrini.

Additional information

Communicated by J. Hoefs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Negrini, M., Stunitz, H., Berger, A. et al. The effect of deformation on the TitaniQ geothermobarometer: an experimental study. Contrib Mineral Petrol 167, 982 (2014). https://doi.org/10.1007/s00410-014-0982-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-014-0982-x

Keywords

Navigation