Skip to main content
Log in

The Axum–Adwa basalt–trachyte complex: a late magmatic activity at the periphery of the Afar plume

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Axum–Adwa igneous complex consists of a basalt–trachyte (syenite) suite emplaced at the northern periphery of the Ethiopian plateau, after the paroxysmal eruption of the Oligocene (ca 30 Ma) continental flood basalts (CFB), which is related to the Afar plume activity. 40Ar/39Ar and K–Ar ages, carried out for the first time on felsic and basaltic rocks, constrain the magmatic age of the greater part of the complex around Axum to 19–15 Ma, whereas trachytic lavas from volcanic centres NE of Adwa are dated ca 27 Ma. The felsic compositions straddle the critical SiO2-saturation boundary, ranging from normative quartz trachyte lavas east of Adwa to normative (and modal) nepheline syenite subvolcanic domes (the obelisks stones of ancient axumites) around Axum. Petrogenetic modelling based on rock chemical data and phase equilibria calculations by PELE (Boudreau 1999) shows that low-pressure fractional crystallization processes, starting from mildly alkaline- and alkaline basalts comparable to those present in the complex, could generate SiO2-saturated trachytes and SiO2-undersaturated syenites, respectively, which correspond to residual liquid fractions of 17 and 10 %. The observed differentiation processes are consistent with the development of rifting events and formation of shallow magma chambers plausibly located between displaced (tilted) crustal blocks that favoured trapping of basaltic parental magmas and their fractionation to felsic differentiates. In syenitic domes, late- to post-magmatic processes are sometimes evidenced by secondary mineral associations (e.g. Bete Giorgis dome) which overprint the magmatic parageneses, and mainly induce additional nepheline and sodic pyroxene neo-crystallization. These metasomatic reactions were promoted by the circulation of Na–Cl-rich deuteric fluids (600–400 °C), as indicated by mineral and bulk rock chemical budgets as well as by δ18O analyses on mineral separates. The occurrence of this magmatism post-dating the CFB event, characterized by comparatively lower volume of more alkaline products, conforms to the progressive vanishing of the Afar plume thermal effects and the parallel decrease of the partial melting degrees of the related mantle sources. This evolution is also concomitant with the variation of the tectono-magmatic regime from regional lithospheric extension (CFB eruption) to localized rifting processes that favoured magmatic differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andersen T, Erambert M, Larsen AO, Selbekk RS (2010) Petrology of nepheline syenite pegmatites in the Oslo rift, Norway: zirconium silicate mineral assemblages as indicators of alkalinity and volatile fugacity in mildly agpaitic magma. J Petrol 51:2303–2325

    Article  Google Scholar 

  • Asprey LB (1976) The preparation of very pure F2 gas. J Fluorine Chem 7:359–361

    Article  Google Scholar 

  • Ayalew D, Barbey P, Marty B, Reisberg L, Yirgu G, Pik R (2002) Source, genesis and timing of giant ignimbrite deposits associated with Ethiopian continental flood basalts. Geochim Cosmochim Acta 66:1429–1448

    Article  Google Scholar 

  • Baker BH, Goles GG, Leeman WP, Lindstrom MM (1977) Geochemistry and petrogenesis of a basalt-benmoreite-trachyte suite from the southern part of the Gregory rift, Kenya. Contrib Miner Petrol 64:303–322

    Article  Google Scholar 

  • Beccaluva L, Bianchini G, Natali C, Siena F (2009) Continental flood basalts and mantle plumes: a case study of the Northern Ethiopian Plateau. J Petrol 50:1377–1403

    Article  Google Scholar 

  • Beccaluva L, Bianchini G, Ellam RM, Natali C, Santato A, Siena F, Stuart FM (2011) Peridotite xenoliths from Ethiopia: inferences about mantle processes from plume to rift settings. GSA Special Paper 478:77–104

    Article  Google Scholar 

  • Beyth M (1972) The geology of central and western Tigray. PhD thesis, Rheinische Friedrich-Wilhelms Universität, Bonn: pp 200

  • Bindeman I (2008) Oxygen isotopes in mantle and crustal magmas as revealed by single crystal analysis. Rev Miner Geochem 69:445–478

    Article  Google Scholar 

  • Boudreau AE (1999) PELE—a version of the MELTS software program for the PC platform. Comput Geosci 25:21–203

    Google Scholar 

  • Coulson IM (2003) Evolution of the North Qôroq centre nepheline syenites, South Greenland: alkali-mafic silicates and the role of metasomatism. Miner Mag 67:873–892

    Article  Google Scholar 

  • Curtis LW, Currie KL (1981) Geology and petrology of the red wine alkaline complex, central Labrador. Geol Survey Canada Bull 294:1–61

    Google Scholar 

  • De Wall H, Dietl C, Jungmann O, Tegene AT, Pandit MK (2011) Tectonic evolution of the central steep zone, Axum area, northern Ethiopia: inferences from magnetic and geochemical data. Geol Soc Spec Publ 357:85–106

    Article  Google Scholar 

  • Elkins LT, Grove TL (1990) Ternary feldspar experiments and thermodynamic models. Am Miner 75:544–559

    Google Scholar 

  • Fall A, Bodnar RJ, Szabó C, Pál-Molnár E (2007) Fluid evolution in the nepheline syenites of the Ditrău alkaline Massif, Transylvania, Romania. Lithos 95:331–345

    Article  Google Scholar 

  • Fourie DS, Harris C (2011) O-isotope study of the bushveld complex granites and granophyres: constraints on source composition, and assimilation. J Petrol 52:2221–2242

    Article  Google Scholar 

  • Gani NDS, Gani MR, Abdelsalam MG (2007) Blue Nile incision on the Ethiopian Plateau: pulsed plateau growth, Pliocene uplift, and hominin evolution. GSA Today 17:4–11

    Article  Google Scholar 

  • Garcia MO, Frey FA, Grooms DG (1986) Petrology of volcanic rocks from Kaula Island, Hawaii. Implications for the origin of Hawaiian phonolites. Contrib Miner Petrol 94:461–471

    Article  Google Scholar 

  • Grant JA (2005) Isocon analysis: a brief review of the method and applications. Phys Chem Earth 30:997–1004

    Article  Google Scholar 

  • Graser G, Potter J, Köhler J, Markl G (2008) Isotope, major, minor and trace element geochemistry of late-magmatic fluids in the peralkaline Ilímaussaq intrusion, South Greenland. Lithos 108:207–221

    Article  Google Scholar 

  • Hagos M, Koeberl C, Kabeto K, Koller F (2010a) Geochemical characteristics of the alkaline basalts and the phonolite–trachyte plugs of the Axum area, northern Ethiopia. Austrian Journal of Earth Sciences 103:153–170

    Google Scholar 

  • Hagos M, Koeberl C, Kabeto K, Koller F (2010b) Geology, petrology and geochemistry of the basaltic rock of the Axum area, northern Ethiopia. In: Ray J et al (eds) Topics in igneous petrology. Springer, Berlin, pp 69–93

    Google Scholar 

  • Hall A (1996) Igneous petrology, 2nd edn. Longman Group Limited, London 551 pp

    Google Scholar 

  • Hamilton DL (1961) Nephelines as crystallization temperature indicators. J Geol 69:321–329

    Article  Google Scholar 

  • Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385:219–229

    Article  Google Scholar 

  • Hofmann C, Courtillot V, Feraud G, Rochette P, Yirgu G, Ketefo E, Pik R (1997) Timing of the Ethiopian flood basalt event and implications for plume birth and global change. Nature 389:838–841

    Article  Google Scholar 

  • Irvine TN, Baragar WRA (1971) A guide to chemical classification of the common volcanic rocks. Can J Earth Sci 8:523–548

    Article  Google Scholar 

  • Jourdan F, Renne PR (2007) Age calibration of the fish canyon sanidine 40Ar/39Ar dating standard using primary K–Ar standard. Geochim Cosmochim Acta 71:387–402

    Article  Google Scholar 

  • Kaur P, Chaudhri N, Hofmann AW, Raczek I, Okrusch M, Skora S, Baumgartner LP (2012) Two-stage, extreme albitization of a-type granites from Rajasthan, NW India. J Petrol (in press). doi:10.1093/petrology/egs003

  • Kieffer B, Arndt N, Lapierre H, Bastien F, Bosch D, Pecher A, Yirgu G, Ayalew D, Weis D, Jerram DA, Keller F, Meugniot C (2004) Flood and shield basalts from Ethiopia: magmas from the African Superswell. J Petrol 45:793–834

    Article  Google Scholar 

  • Le Bas MJ, Le Maitre RW, Woolley AR (1992) The construction of the total alkali–silica chemical classification of volcanic rocks. Miner Petrol 46:1–22

    Article  Google Scholar 

  • Liu W (2002) Fluid–rock interaction during subsolidus microtextural development of alkali granite as exemplified by the Saertielieke pluton, Ulungur of the northern Xinjiang, China. Chem Geol 182:473–482

    Article  Google Scholar 

  • López-Moro FJ (2012) EASYGRESGRANT—a microsoft excel spreadsheet to quantify volume changes and to perform mass-balance modeling in metasomatic systems. Comput Geosci 39:191–196

    Article  Google Scholar 

  • Lucassen F, Pudlo D, Franz G, Romer RL, Dulsky P (2013) Cenozoic intra-plate magmatism in the Darfur volcanic province: mantle source, phonolite-trachyte genesis and relation to other volcanic provinces in NE Africa. Int J Earth Sci (Geol Rundsch) 102:183–205

    Article  Google Scholar 

  • Merla G, Abbate E, Canuti P, Sagri M, Sacconi P (1973) Geological map of Ethiopia and Somalia 1:2000000. Consiglio Nazionale delle Ricerche (CNR), Firenze

    Google Scholar 

  • Mohr PA (1962; reprinted 1971). The geology of Ethiopia. University College of Addis Ababa Press, Addis Ababa

  • Munoz JL (1971) Hydrothermal stability of relations of synthetic lepidolite. Am Miner 56:2069–2087

    Google Scholar 

  • Natali C, Beccaluva L, Bianchini G, Siena F (2011) Rhyolites associated to Ethiopian CFB: clues for initial rifting at the Afar plume axis. Earth Planet Sci Lett 312:59–68

    Article  Google Scholar 

  • Parson I, Mason RA, Becker SM, Finch AA (1991) Biotite equilibria and fluid circulation in the Klokken intrusion. J Petrol 32:1299–1333

    Article  Google Scholar 

  • Peccerillo A, Donati C, Santo AP, Orlando A, Yrgu G, Ayalew D (2007) Petrogenesis of silicic peralkaline rocks in the Ethiopian rift: geochemical evidence and volcanological implications. J Afr Earth Sci 48:161–173

    Article  Google Scholar 

  • Philpotts AR, Ague JJ (2009) Principles of igneous and metamorphic petrology, 2nd edn. Cambridge University Press, Cambridge 667 pp

    Book  Google Scholar 

  • Pik R, Deniel C, Coulon C, Yirgu G, Hofmann C, Ayalew D (1998) The northwestern Ethiopian Plateau flood basalts: classification and spatial distribution of magma types. J Volcanol Geoth Res 81:91–111

    Article  Google Scholar 

  • Pik R, Deniel C, Coulon C, Yirgu G, Marty B (1999) Isotopic and trace element signatures of Ethiopian flood basalts: evidence for plume–lithosphere interactions. Geochim Cosmochim Acta 63:2263–2279

    Article  Google Scholar 

  • Prior GT (1899) Riebechite in trachytic rocks from Abyssinia. Miner Mag XII:92–95

  • Prior GT (1900) On aegirine and riebeckite anorthoclase rocks related to the Grorudite–Tinguaite series from the neighborhood of Adwa and Axum, Abyssinia. Miner Mag XII:255–273

  • Ridolfi F, Renzulli A, MacDonald R, Upton BGJ (2006) Peralkaline syenite autoliths from Kilombe volcano, Kenya Rift Valley: evidence for subvolcanic interaction with carbonatitic fluids. Lithos 91:373–392

    Article  Google Scholar 

  • Roeder E (1992) Fluid inclusion evidence for immiscibility in magmatic differentiation. Geochim Cosmochim Acta 56:5–20

    Article  Google Scholar 

  • Schilling J, Marks MAW, Wenzel T, Vennemann T, Horváth L, Tarassoff P, Jacob DE, Markl G (2011) The magmatic to hydrothermal evolution of the intrusive mont saint–hilaire complex: insights into the late-stage evolution of peralkaline rocks. J Petrol 52:2147–2185

    Article  Google Scholar 

  • Schönenberger J, Marks M, Wagner T, Markl G (2006) Fluid-rock interaction in autoliths of agpaitic nepheline syenites in Ilimaussaq intrusion, South Greenland. Lithos 91:331–351

    Article  Google Scholar 

  • Sharp ZD (1995) Oxygen isotope geochemistry of the Al2SiO5 polymorphs. Am J Sci 295:1058–1076

    Article  Google Scholar 

  • Steiger RH, Jäger E (1977) Subcommission on Geochronology: convention on the use of decay constants in geo- and cosmo-chronology. Earth Planet Sci Lett 36:359–362

    Article  Google Scholar 

  • Suk NI, Kotel’nikov AR, Koval’skii AM (2007) Mineral thermometry and the composition of fluids of the sodalite syenites of the Lovozero alkaline massif. Petrology 15:441–458

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Spec Publ 42:313–347

    Article  Google Scholar 

  • Tadesse T, Hoshino M, Sawada Y (1999) Geochemistry of low-grade metavolcanic rocks from the Pan-African of the Axum area, northern Ethiopia. Gondwana Res 99:101–124

    Google Scholar 

  • Tadesse S, Milesi JP, Deschamps Y (2003) Geology and mineral potential of Ethiopia: a note on geology and mineral map of Ethiopia. J Afr Earth Sci 36:273–313

    Article  Google Scholar 

  • Trua T, Deniel C, Mazzuoli R (1999) Crustal control in the genesis of Plio-Quaternary bimodal magmatism of the Main Ethiopian Rift (MER): geochemical and isotopic (Sr, Nd, Pb) evidence. Chem Geol 155:201–231

    Article  Google Scholar 

  • Weaver BL (1991) The origin of ocean island basalt end-member compositions: trace element and isotopic constraints. Earth Planet Sci Lett 104:381–397

    Article  Google Scholar 

  • Zanettin B, Bellieni G, Justin Visentin E (2006) Stratigraphy and evolution of the trachy-rhyolitic volcanism of the Senape area (East Eritrean Plateau). J Afr Earth Sci 45:478–488

    Article  Google Scholar 

  • Zhang C, Holtz F, Ma C, Wolff PE, Li X (2012) Tracing the evolution and distribution of F and Cl in plutonic systems from volatile-bearing minerals: a case study from the Liujiawa pluton (Dabie orogen, China). Contrib Miner Petrol 164:859–879

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the three anonymous Reviewers for their constructive criticisms and the Editor J. Hoefs for his final comments. The authors gratefully acknowledge the analytical support provided by R. Tassinari (XRF and ICP-MS analyses), R. Carampin (electron microprobe analyses), M. Laurenzi (Ar–Ar datings) and L. Dallai (oxygen isotopic analyses), as well as B. Bonin for his useful comments on an early version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Bianchini.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 18 kb)

Supplementary material 2 (XLSX 94 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Natali, C., Beccaluva, L., Bianchini, G. et al. The Axum–Adwa basalt–trachyte complex: a late magmatic activity at the periphery of the Afar plume. Contrib Mineral Petrol 166, 351–370 (2013). https://doi.org/10.1007/s00410-013-0879-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-013-0879-0

Keywords

Navigation